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Liquid petroleum gas (LPG) is one area where catastrophic
release scenarios have occurred. For this reason, preventive,
and protective barriers have to be installed in order to reduce
the occurrence and the severity of these scenarios. This article
addresses an analysis of deluge system barrier and proposes a
making decision process to ensure a high level of reliability,
availability, maintainability, and safety (RAMS) using a
robust Reliability Analysis with conditional probabilities. To
achieve this RAMS target, a methodology for converting fault
tree analysis (FTA) in continuous time using Monte Carlo
(MC) simulation to Bayesian belief network (BBN) is devel-
oped. The probabilistic importance factors (PIFs) for critical
components ranking and decision making are also mapped
using BBN inferences in Water Deluge Systems (WDS) with an
optimization aim using redundancy or maintenance tasks.
This analysis illustrates the helpfulness of mapping PIFs into
BBN for making a decision in any critical technological infra-
structures. © 2018 American Institute of Chemical Engineers Process
Saf Prog 2018
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INTRODUCTION
The oil and gas industries operate a great and complex

variety of processes and plants. Where a major accident
involving fires, boiling liquid expansion vapour explosions
(BLEVEs), vapor cloud explosions (VCEs) [1] and domino
effects [2,3] have occurred, with serious damage on human
beings, industrial sites, environment, and economy.

The storage area of Liquid petroleum gas (LPG) petroleum
industries are one of the areas where these catastrophic sce-
narios happened because of flammable substances presence
in this area. Darbra et al. [4] and Abdolhamidzadeh et al. [5]
showed that 89% of flammable substances were involved in
domino accidents. Examples of recent accidents in the LPG
facilities, such as release in Virginia, Mississippi USA, Viareggio

Italy and others along with their key information’s are cited by
Al-shanini et al. [1]. For this reason, it is very important to
insure a high level of safety with organizational improvements
and technical devices. Then, the implementation of efficient
safety barriers is a usual safety preventive action. One of the
typical technical devises used as safety barriers is the Water
Deluge systems (WDS) [6–8]. These are able to reduce the
occurrence of catastrophic scenarios by mitigation of high tem-
peratures and heat flux. An LPG complex has to be highly reli-
able and available during all its life because of high probability
of fire and domino effect scenarios. Several articles focus on
the mitigation of catastrophic scenarios using WDS [9–12]
especially in LPG storage areas. The WDS do not only reduce
the global heat flux with an existing fire, but reduce the proba-
bility for fire or explosion occurrence if released on a gas
cloud.

To ensure a very high reliability, availability, maintainability,
and Safety (RAMS) of WDS, a large variety of reliability and risk
analysis methodologies exist with both qualitative and quantita-
tive proprieties as detailed by Khan et al. In the article of
“Methods and models in process safety and risk management:
Past, present and future” [13]. In aim to ensure safety in the LPG
storage area and improve these infrastructures, several methods
have been developed. The FTA (Fault Tree Analysis) which is
one of the best prominent techniques used by a wide range of
industries [14,15], allowed the identification of the potential
causes of the WDS design failures based on using reliability engi-
neering theory and Boolean functions.

In order to determine which apparatus or equipment is the
most important contributor when a failure occurs in the sys-
tem, the probabilistic importance factors (PIFs) assessment
from FTA is widely applied. The Birnbaum’s and Criticality
PIFs allowed ranking, adapting new corrective or preventive
maintenance tasks and/or design optimization. An extensive
review of reliability importance measures is presented in Kuo
and Zhu [16]. New measures have also been defined and used
in optimization system design. For example, Jussi K. Vaurio
has developed several importance factors related to fault diag-
nostics and for making decision [17,18]. Contini et al. proposed
method to apply importance factors to multiple FTA and initi-
ating events in FTA [19,20]. Also, Eryilmaz et al. proposed© 2018 American Institute of Chemical Engineers
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computation of marginal and joint reliability importance for a
coherent system with multiple types of dependent components
[21].

The standard FTA presents some limits: they are not suit-
able in reliability analysis for a large system, redundant fail-
ures, common cause failures and time depend failures [22–24].
However, different approaches using artificial intelligence in
risk analysis [25,26] [27] and with FTA especially were used.
For depth and dynamic analysis, several techniques are used
with FTA as the binary decision diagrams (BDD) [28–30] used
to encode efficiently FTA and calculation of minimal cut sets.
The Monte Carlo (MC) simulation is designed for continuous–
time models to compute the system reliability in FTA
[14,31,32]. In the articles by Freeman and Summers [33,34] MC
simulation is used as the baseline method for comparison to
results obtained using variance contribution analysis and error
propagation methods.

There are other FTA extensions using Petri Nets [35], fuzzy
numbers [36], Markov Chains [14], and Neural Networks [37] .

The majority of the previous methods present a limitation
which are frequently nondeterministic such as artificial neural
networks, multiple regression models, or as the Markov
models with limited ability to handle the cause-symptom rela-
tionships in fault diagnosis [38,39]. In this case, an important
feature of Bayesian Belief Network (BBN) is their ability to
represent the probabilistic relationship between causes and
symptoms or between symptoms and faults. It can also repre-
sent multi-fault and multi-symptom models.

Recently BBN is more and more used in dependability,
reliability, maintenance and risk analysis [40] due to the
fact that the model can perform forward and predictive
analysis as well as diagnostic analysis and design
optimization [22].

The BBN for reliability analysis can be achieved by convert-
ing the reliability models: Bobbio et al., Lampis et al. and

Khakzad et al. presented an algorithm for converting FTA into
BBN [22,24,39]. Kalantarnia et al. used Bayesian theory for
updating occurrence probability of event tree scenarios [41].
Khakzad et al. and Badreddine et al. presented a methodology
to map bow-tie (combination of a fault tree and an event tree)
into Bayesian network for dynamic safety analysis [23,42].

Weber et al. compared Bayesian Networks with fault trees,
Markov chains, and Petri nets [40].

Many authors used BBN in their work for different indus-
trial fields such as Baoping et al.’s model human error on off-
shore blowouts using pseudo FTA [43], Khakzad et al. who
used the application of bow-tie and Bayesian network
methods in drilling operations [44]. Dongiovanni et al. trans-
lated fault tree into a Bayesian network for a nuclear plant tur-
bine system [45].

The present study demonstrates a methodology to convert
FTA into a corresponding BBN in continuous time using MC
simulation. Additionally, the methodology includes PIFs into
BBN for building and belief update of the network by using
Bayesian inferences for making decision in WDS. It is an
experiment of mixing two strong concepts in BNN (inference)
and FTA (PIFs analysis). This article also presents a design
optimization of WDS using redundancy and maintenance tasks
for reducing the losses due to equipment failure by intelli-
gently maintaining the equipment before catastrophic failures
occur.

Following this introductory in section one, the rest of this
article is organized as follows. The second section gives a brief
overview of reliability analysis methods such as FTA, reliability
functions, PIFs, BBN, and mapping algorithm from FTA and
PIF’s to BBN. In the third section, a case study of WDS
installed in Algerian LPG storage area is presented while
section four applies Reliability modelling of water deluge sys-
tem, results discussion and design optimization. The last
section is devoted to the conclusion of this work and
perspectives.

RELIABILITY ANALYSIS

Fault Tree Analysis Techniques and Availability
functions

FTA is one of the well-known used techniques in process
safety and reliability analysis that graphically depicts failure
propagation and logical relationships between root causes and
fault paths. The FTA bases are the reliability theory, Boolean
algebra and probability theory and provide a quantitative risk
analysis (QRA).

FTA is a very prominent method that combines qualitative
analysis, like minimal cut sets, and quantitative techniques,
including a wide variety of stochastic methods to compute fail-
ure probabilities. FTA is useful to depict system failure in a
simple and understandable manner.

Figure 1. Example of general fault tree structure.

Table 1. Failure probabilities propagated by using standard probabilities equations

Gates Probability equations

And P [and (X1, …, Xn) = 1] = P [X1 = 1 ^ … ^ Xn = 1] = P [X1 = 1] × … × P [Xn = 1] … (1)
Or P [or (X1, …, Xn) = 1] = 1 − P [or

(X1, …, Xn) = 0] = 1 − P [X1 = 0 ^ … ^ Xn = 0] = 1 − (1 − P [X1 = 1]) × … × 1
− (1 − P [Xn = 1]) … (2)

KooN P [koon (X1, …, Xn) = 1] = P [(X1 = 1 ^ … ^ Xk = 1) _ (X1 = 1 ^ … ^ Xk − 1 = 1 ^ Xk + 1 = 1) _ …

_ (Xn − k = 1 ^ … ^ Xn = 1)] … (3)

Where: P[X = 1] denotes the probability that X is in working state and P[X = 0] denotes the probability that X is in failure state, with
a condition that, in koon, k is the minimum input in working state (k-out-of-n: G).
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Fault Tree Analysis Qualitative Aspect
As a directed acyclic graph (DAG), FTA structure consists

of two types of nodes: events and gates (and, or, k-out-of-n)
as shown in Figure 1, which should capture all possible cause-
consequence relationships. The events can be divided into
basic events which occur spontaneously, the intermediate
events which are caused by one or more other events, and the
top event which is the event being analyzed. The gates repre-
sent how failure in subsystems interacts resulting in failure of
the system allowing the top event to occur.

However, The FTA structure algorithm of large and compli-
cated fault tree is generally developed using BDDs [28] to
analyze probable common cause failure (CCF), compute mini-
mal cut sets and assess probabilities of root events.

In the present work, therefore, a large FTA of WDS is
defined by incorporating the failure modes of system compo-
nents using BDD.

Fault Tree Analysis Quantitative Aspect
The quantitative calculation of the FTA combines numerical

values of basic events to obtain precise and realistic probabili-
ties of system failure using logical gates. For a system of X1,
X2, …, Xn input basic events, failure probabilities can be easily
propagated by using standard probability equations listed in
Table 1.

However, for the quantification of the large FTA, several
techniques are employed such as the BDD, BBN, fuzzy num-
bers, Monte Carlo, Markov chain [13,14]. In this article, three
reliability functions associated with the failure behavior of
components [46] are used to obtain the availability probability
that WDS is functioning or not at a given time.

Constant model

Q tð Þ¼ q ð4Þ

Where: ‘q’ denotes a constant failure probability.

Simple periodic test model

Q tð Þ¼ 1−e−λ:t , if t < t0

1−e−λ: t− t0ð Þmodτ½ �,otherwise

(
ð5Þ

Where: ‘λ’ denotes the failure rate, ‘τ’ the test period (time
interval between two consecutive tests) and ‘t0’ the date of
first test.

Figure 2. An illustration of the SPT and EPT models evolution in time. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Example of general Bayesian belief network.
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Extended periodic test model

Q tð Þ¼
λ

λ+ μ
: 1−e− λ + μð Þ:t
� �

, if t < t0

λ

λ+ μ
: 1−e− λ+ μð Þ: t− t0ð Þmodτ½ �
� �

,otherwise

8>><
>>: ð6Þ

Where: ‘λ’ denotes the failure rate, ‘μ’ the repair rate (when
the failure has been found during a test), ‘τ’ the test period (time
interval between two consecutive tests) and ‘t0’ the date of
first test.

In The repair phase each component is refurbished with
preventive maintenance of good-as-new type which gives its
exponential law to zero (as if t = 0), hence the use of the mod-
ular in the Eq. 6.

Figure 2 illustrates the evolution of the SPT and EPT
models.

MC Simulation is also used in this article to compute avail-
ability over an interval time (for continues time), with random
failure times and repair times [31,32].

For each probability used in the model, it is possible to intro-
duce an uncertainty on failure rate parameter, and at last, the
impact of the uncertainties on the data into the final results is
obtained. The estimated failure rate of each component in the
system is given under both the multi-sample assumption, and
under the assumption of homogeneous data sets. The uncertainty
of the failure rate λ is presented as a 90% confidence interval cov-
ering 90% of the variation between the multiple samples, such
that the true value of λ fulfils: Pr (λ5% ≤ λ < λ95%) = 90%.

Normal distribution model

fμ,σ tð Þ¼ 1

σ
ffiffiffiffiffi
2π

p e−
t−μð Þ2
2σ2

� �
ð7Þ

Where: ‘μ’ is the mean and ‘σ’ the standard deviation.

Probabilistic Importance Factors
To evaluate which components are the most important con-

tributors in the reliability of a system and improving RAMS in
the system, it is very essential to compute PIF.

The PIF of a component depends generally on the location
of the component in the system and the reliability of the com-
ponents. It is natural to compute the relative importance of the
individual components for ranking and optimization, however;
several PIFs [16,25] have been developed according to their
interest. In this article, two of the most important probabilistic
factors are discussed.

Birnbaum’s Probabilistic Importance Factor
The Birnbaum’s importance is the first PIF proposed by

Z.W. Birnbaum in 1968 and it only depends on the structure of
the system and reliability of the other components.

For a system S with n components, The Birnbaum’s PIF for
a component i at time t denoted by I Bi tð Þ is:

I Bi tð Þ¼ ∂ps tð Þ
∂pi tð Þ for i¼ 1,2,…,n ð8Þ

This PIF can be interpreted as the probability that the sys-
tem S is in an operating state having the component i as the
critical component, knowing that i is in operation, either:

I Bi tð Þ¼ p
sj ið Þ tð Þ−p

sj ið Þ tð Þ ð9Þ

Where:
p(s| i)(t) denotes the conditional probability that the system

is failed given that component i has failed and p
sj ið Þ tð Þ the

Figure 4. A simplification of deluge system flowchart diagram installed in the storage area of Algerian LPG project.

Figure 5. Water deluge network in LPG sphere. [Color figure
can be viewed at wileyonlinelibrary.com]
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conditional probability that the system is failed with compo-
nent i working.

Components with a very low value of Birnbaum’s PIF have
a negligible effect on the system reliability and extra efforts
finding high quality data for such components maybe consid-
ered a waste of time.

Criticality Probabilistic Importance Factor
The criticality PIF is related to Birnbaum’s PIF and indi-

cates on which components it is necessary to do actions of
component repair, and then, the system will start function-
ing again.

The component importance measures criticality importance
I CRi tð Þ of component i at time t is the probability that compo-
nent i is critical for the system and is failed at time t when the
system S is surely failed at time t.

I CRi tð Þ¼ pi tð Þ
ps tð Þ × I Bi tð Þ for i¼ 1,2,…,n ð10Þ

The criticality PIF is appropriate to improve system perfor-
mance by focusing on the truly important components, by
allowing avoidance of assigning high importance to compo-
nents that are very unlikely to occur.

Bayesian Belief Networks Analysis
BBN is a powerful tool in artificial Intelligence to represent

uncertain knowledge and dependency in probabilistic systems.
A BBN consists of qualitative and quantitative parts. The quali-
tative par is given by a directed acyclic graph with nodes
representing discrete or continuous random variables, and
directed arcs (from parent to child) representing causal or
influential relationships between variables. The quantitative
parts are the conditional probabilistic tables (CPT), which
define the probabilistic relationship between each child node
and its parents according to Bayes’ theorem.

P AjBð Þ¼ P Að Þ×P BjAð Þð Þ=P Bð Þ ð11Þ

Figure 6. Reliability Analysis methodology of water deluge system. [Color figure can be viewed at wileyonlinelibrary.com]
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Where: P(A| B) is the probability of event A occurring
given that we have witnessed event B, P(A) is the probability
of event A, P(B| A) is the probability of event B occurring
given that we have witnessed event A and P(B) is the probabil-
ity of event B.

The Figure 3 shows an example of BBN with CPT of differ-
ent Boolean gates. Together, the qualitative and the quantita-
tive parts encode all relevant information contained in a full
joint probability model.

BBN is widely used [40] in Reliability analysis it allowed the
study of the systems behavior of (functional and dysfunctional
analysis) components observation in complex systems.

In this article, BBNs are used as an alternative method of FTA
to use it in a depth probabilistic analysis using algorithms pro-
posed in these articles [22,24,39] as described in the next section.

The advantage of BBNs over traditional methods is that
BBNs can compute not only the probability of the top event
given the leaves, but also the probability of the leaves given
the top event, where a failure has surely occurred, and is able
to find which leaves are most like causes. Additional evidence
can also be given, such as certain leaves known to have not
failed.

Mapping Algorithm
Mapping FTA by BBN

A number of recent studies have attempted to use BN’s to
provide models and analysis of complex systems. In particular,

FTs are converted into BBN because there is a clear correspon-
dence between them.

FTA can be converted to BBN for a depth probabilistic
analysis and using inferences. Mapping algorithm of convert-
ing FT to BBN is based on the work of [22,24,39] and achieved
performing the following step.

1. Each basic event and top event of FTA is translated to
parent node and child node, respectively in correspond-
ing BBN

2. For each parent node in BBN, it is assigned the same fail-
ure probability over time of the corresponding basis event
in FTA.

3. The relationships between basic events “And, Or, k-out-
of-n” in FTA are converted into equivalent CPT in BBN.

Figures 1 and 3 show the translation of general FTA struc-
ture into BBN with CPTs for all types of corresponding Bool-
ean gates.

Mapping PIF by BBN
The posterior probability can be also computed in a BN for

a single component, for a subset of components or for all com-
ponents except the ones to which evidence has been assigned.
When the fault is given as evidence, the posterior probability
of each component gives the criticality of each of them and
the posterior probability of a sub-system gives the criticality of
the sub-system in causing the system failure.

Table 2. Data of water deluge system components from OREDA [49]

Node Component

Parameters
(λ, σ), τ, t0 (SPT)

(λ, σ), μ, τ, t0 (EPT) Model U(t = 87600 h)

N1 Deluge valve fail to open
on demand

P (1)=5.223E-3 Constant 5.2230E-03

N2 Nozzle spray blockage or
reduced flow

P (2)=1.0E-6 Constant 1.0000E-06

N3, N4, N5 Flam detector 1, 2, 3/ (5.9E-7, 5.9E-7), 3.39E5, 4 SPT 5.4959E-02
N6, N9/N12,
N15/N18

Failure of jokey
1, 2/electrical 1, 2/diesel
pump

(1.7E-6, 2.48E-6), 2E-2, 1.471E5,
1.471E5

EPT 1.4520E-01

N7, N10, N13, N16,
N31

Failure of electrical motor
1, 2, 3, 4, 5

(1.473E-6, 1.123E-5), 1.054E-2,
1.697 E4, 1.697 E4

EPT 4.0325E-02

N8 Failure of pressure sensor (5.3E-6, 7.55E-6), 3.774E4, 48 SPT 6.8165E-02
N11, N14, N17, N19 Pump fail to start on

demand
P(11, 14, 17, 19) = 2.84E-3 Constant 2.8400E-03

N20 Failure in diesel engine (1.466E-5, 1.274E-5), 0.1639,
1.705E4, 1.705E4

EPT 3.3083E-02

N21 Rupture of tank A P (21)=2.89E-7 Constant 2.8900E-07
N22 Manuel valve leakage in

closed position
(5.074E-5, 5.074E-5), 8.403E-2,
4.927E3, 4.927E3

EPT 1.7580E-01

N23 Human error P (23)=0.01 Constant 1.0000E-02
N24, N25 Filter A/B fail (3.805E-5, 3.805E-5), 6.897E-2, 6.57E3 EPT 7.7608E-02
N26, N29 Glob valve1/2 leakage (6.34E-6, 1.996E-5), 3.704E-2, 3.943E4,

3.943E4
EPT 8.9987E-02

N27 Failure in the level sensor (9.2E-7, 1.26E-6), 2.174E5, 48 SPT 8.3636E-02
N28, N33 Automatic valve1/2/fail to

open
(5.93E-6, 5.93E-6), 0.1667, 42160,42160 EPT 1.9734E-02

N30 Well pump failure (1.026E-5, 9.32E-6), 6.258E-3, 2.437E4,
2.437E4

EPT 1.4430E-01

N32 Well pump fail to start on
demand

P (32)= 6E-3 Constant 6.0000E-03

SPT (Simple Periodic Test), EPT (Extended Periodic Test)

6 Month 2018 Published on behalf of the AIChE DOI 10.1002/prs Process Safety Progress



From this reasoning, Birnbaum’s measure can be calculated
in terms of posterior probability by inferences in the network.
For Birnbaum’s PIF equation it will be:

I Bi tð Þ¼ p
s¼yes j i¼yesð Þ tð Þ−p

s¼yes j i¼noð Þ tð Þ ð12Þ

In addition, as results the criticality PIF will be.

I Cri tð Þ¼
p

s¼yes j i¼yesð Þ tð Þ−p
s¼yes j i¼noð Þ tð Þ

� �
:pi tð Þ

ps tð Þ ð13Þ

Where: p(s = yes | i = yes)(t) denotes the probability that the
system fails given that component ‘i’ has failed at time ‘t’ and
p(s = yes | i = no)(t) denotes the probability that the system fails

with that component ‘i’ working at time ‘t’ this probabilities are
obtained using inferences in the BBN.

pi(t) the probability of the component ‘i’ at time ‘t’ and ps(t)
the probability of the System ‘s’ at time ‘t’.

CASE STUDY: WATER DELUGE SYSTEM
The process facility of the LPG storage area needs highly

reliable Deluge System according to “the National Fire Protec-
tion Association standards [6–8] due to catastrophe scenarios
that happened causing material damage and personnel risk.

When improving the RAMS of WDS design in LPG storage
area, several robust and making decision methods need to be
taken into account. In order to implement the methodology
described in previous sections, the WDS installed in the stor-
age area of LPG project in the south of Algeria was selected.

Figure 7. The fault tree structure of water deluge system with the extension of failure in pumps system in (a), where basic events
names are listed in Table 2
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The choice of this site is due to its localization near to other
oil and gas sites and its sensibility to the economy of this coun-
try. For these reasons, the WDS installed must be able to pro-
tect it from all dangerous and catastrophic scenarios.

The deluge system is assumed to supply, on demand by
vote system of 2-out-of-3 detectors, water at a controlled pres-
sure to the LPG storage area in order to reduce the heat load
from a fire. Therefore, it is evident that the reliability of the
WDS has to be high to obtain sufficient heat load capacity.
Figure 4 displays a flowchart diagram of the main function
within this WDS which is to supply the LPG storage area.

The water coming from the well and outside of the site is
stored in two tanks with a capacity of 14000 m3 each one. Sev-
eral redundant pump systems [two jockey pumps (2 × 100%)
8 barg, two electrical pumps (2 × 50) 10 barg, diesel pump]
are in standby mode and provide water supply to the ring-
main on demand [47,48]. In order to distribute the firewater to

all fire-fighting equipment in the site, the ring-main is con-
stantly pressurized at eight barg by the jockey pump. In case
of a gas or fire situation, the Fire and Gas (F&G) logics will dis-
patch a signal to the electrical pumps and deluge valve to start.
When deluge valve skid to the fire area will open, water flows
through the deluge nozzles. In order to maintain the pressure
level in ring-main, pressure devices are installed. Figure 5
shows an explicative picture of some WDS components
installed in the LPG sphere.

RELIABILITY MODELLING OF DELUGE SYSTEM
The quantitative methods of reliability analysis used in

this article are summarized in the flowchart in Figure 6. A
“Failure Mode Effect and Criticality Analysis method”
(FMECA) is required to stat the reliability study. FMECA is a
very efficient method, which is engaged to explore and
identify the effects, probability, failure rate, criticality, conse-
quences, how to avoid, how to detect and how to mitigate
the effects of the failure or malfunctions of each individual
components in the deluge system. Table 2 identifies which
part of the system has to be included for in-depth probabi-
listic study, and gives the information such as failure mode,
probability and failure rate from many sources such as
knowledge-base, expert judgments or OREDA– Offshore
Reliability Database [49].

FTA for WDS
In accordance with the results obtained from FMECA, a

FTA model in Figure 7 (with extension of failure in pumps
system in (a)) is used for analyzing how the effectiveness
over time of the WDS ensures a high RAMS. The top event
of the tree is “Unavailability of Firefighting system” chosen
to study the WDS and to analyze how the system supplied it
in water. According to the structure complexity, and to clar-
ify the representation, the FT is split up into four major sub-
systems: the pumps system, deluge valve, tanks system, and
logical system. These subsystems contribute directly to the
top event and are connected to the top event through an
Or-gate.

The components of the subsystems are listed in Table 2,
and are connected using ‘and’, ‘or’ and ‘k-out-of-n’ gates, with
their failure probabilities over time obtained using data listed
in Table 3 and by performing different reliability functions as
defined in section Fault Tree Analysis Quantitative Aspect
according to the state of the components. The approximation

Table 3. Logical gates and subsystems

Node Name U(t = 87600 h)

Or1 Unavailability of firefighting system 0.1132
Or2 Failure in deluge system 5.2210E-3
And3 Failure in pumps system 1.2764E-2
And4 Jokey pumps system fail 4.3972E-2
And5 Electric pumps system fail 0.1008
Or6 Diesel pump system fail 0.2481
KooN10 Failure in flam logical system 8.6211E-3
Or11 Jokey pump system A fail 0.1797
Or12 Jokey pump system B fail 0.2453
Or13 Jokey pump 2 fail 0.1881
Or14 Electric pump system A fail 0.2474
Or15 Electric pump system B do not star 0.2393
Or16 Electric pump 2 fail 0.1811
Or17 Failure of tanks system 8.9160E-2
And18 No water from tanks 5.3194E-8
Or19 Tank B unused 0.1841
And20 No water from the well 3.6516E-3
Or21 Well pump system fail 0.1823
Or22 Low level of water in tank 8.5331E-2
And23 Failure in filter system 5.6092E-4
And24 Failure in automatic valve system 1.8535E-3

Figure 8. Deluge system unavailability computed using BDD Monte Carlo and BBN over 120 months. [Color figure can be
viewed at wileyonlinelibrary.com]
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of results in continuous time are obtained using MC simulation
for each component taking into consideration the dispersion
interval 90% as recommended in [49] and 600 simulations; the
average of results convergence being verified.

Then, the failure probabilities of the intermediate events and
the unavailability of Firefighting system in LPG storage area are
calculated by Boolean expression obtained from using BDD.

The results of WDS unavailability obtained using GRIF®

software over a mission time of 87600 h by BDD and MC sim-
ulation are shown and compared in Figure 8. The average
probability of estimated unavailability is 0.1107 with an
approximated reliability of 0.7327.

Figure 9. Bayesian belief network structure of water deluge system unavailability, where parent nodes are listed in Table 2.

Table 4. Number of minimal cut sets and their contribution in
the top event with example of high unavailability in
each order at t = 87600 h

Examples

Order Number
Probability of
products (%) Products

Probability
of products

1 3 79.93 N27 7.739E-02
2 11 19.66 N6,N8 8.575E-03
3 1 0.33 N24,N25,N26 3.434E-04
5 162 0.07 N6,N9,N12,N15,N18 5.071E-05

Figure 10. Example of unavailability results a t = 87600 h before and after inference of most critical components. [Color figure
can be viewed at wileyonlinelibrary.com]
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Table 5. Comparison between importance factors obtained using binary decision diagrams and Bayesian belief network of
probabilistic importance factors for ranked components.

Level Sensor

time

I Bi tð Þ I Cri tð Þ
BDD BBN BDD BBN RE (%)

0 9.948E-01 9.948E-01 0 0
4380 9.876E-01 9.876E-01 2.648E-01 2.640E-01 0.32
8760 9.716E-01 9.722E-01 2.416E-01 2.394E-01 0.91
13140 9.430E-01 9.440E-01 1.885E-01 1.848E-01 2.00
17520 9.530E-01 9.535E-01 2.843E-01 2.682E-01 5.65
21900 9.250E-01 9.267E-01 2.252E-01 2.196E-01 2.49
26280 9.111E-01 9.118E-01 2.235E-01 2.156E-01 3.55
30660 8.780E-01 8.802E-01 1.854E-01 1.849E-01 0.26
35040 9.085E-01 9.094E-01 2.716E-01 2.607E-01 4.01
39420 8.823E-01 8.824E-01 2.314E-01 2.282E-01 1.42
43800 9.801E-01 9.806E-01 6.919E-01 6.876E-01 0.62
48180 9.577E-01 9.592E-01 5.317E-01 5.290E-01 0.52
52560 9.647E-01 9.650E-01 6.177E-01 5.883E-01 4.75
56940 9.410E-01 9.424E-01 4.978E-01 4.779E-01 4.00
61320 9.120E-01 9.146E-01 4.016E-01 3.914E-01 2.55
65700 8.700E-01 8.731E-01 3.116E-01 3.059E-01 1.84
70080 8.904E-01 8.978E-01 3.748E-01 3.741E-01 0.17
74460 8.880E-01 8.902E-01 3.794E-01 3.685E-01 2.88
78840 8.819E-01 8.820E-01 3.708E-01 3.619E-01 2.41
83220 8.998E-01 9.129E-01 4.196E-01 4.554E-01 7.85
87600 9.671E-01 9.682E-01 7.295E-01 7.178E-01 1.60
RE = 2.37

Pressure Sensor

0 0 0 0 0
4380 6.947E-02 7.055E-02 1.047E-01 1.073E-01 2.54
8760 1.302E-01 1.321E-01 1.826E-01 1.814E-01 0.67
13140 1.811E-01 1.835E-01 2.049E-01 1.965E-01 4.14
17520 4.045E-02 3.873E-02 5.844E-02 5.844E-02 0.01
21900 1.002E-01 9.985E-02 1.272E-01 1.245E-01 2.16
26280 1.545E-01 1.547E-01 2.013E-01 1.889E-01 6.18
30660 1.982E-01 1.994E-01 2.248E-01 2.124E-01 5.51
35040 7.314E-02 7.016E-02 1.034E-01 1.002E-01 3.16
39420 1.238E-01 1.221E-01 7.410E-03 7.830E-03 5.33
43800 1.923E-01 1.911E-01 1.046E-01 1.079E-01 3.10
48180 2.366E-01 2.363E-01 1.607E-01 1.616E-01 0.55
52560 1.106E-01 1.059E-01 1.015E-01 1.023E-01 0.77
56940 1.633E-01 1.601E-01 1.537E-01 1.510E-01 1.77
61320 2.075E-01 2.056E-01 1.888E-01 1.831E-01 3.02
65700 2.412E-01 2.403E-01 1.999E-01 1.904E-01 4.75
70080 1.314E-01 1.270E-01 1.271E-01 1.275E-01 0.29
74460 1.818E-01 1.779E-01 1.958E-01 1.861E-01 5.00
78840 2.158E-01 2.131E-01 2.196E-02 2.262E-02 2.91
83220 2.600E-01 2.618E-01 6.516E-02 7.284E-02 10.53
87600 1.677E-01 1.612E-01 9.381E-02 9.740E-02 3.69
RE = 3.15

Deluge Valve

0 1 1 9.998E-01 9.998E-01 0.00
4380 9.879E-01 9.884E-01 3.480E-01 3.075E-01 11.62
8760 9.671E-01 9.686E-01 1.575E-01 1.386E-01 11.98
13140 9.340E-01 9.362E-01 8.164E-02 7.120E-02 12.79
17520 9.393E-01 9.414E-01 9.207E-02 7.745E-02 15.88
21900 9.073E-01 9.109E-01 5.818E-02 5.068E-02 12.90
26280 8.893E-01 8.922E-01 4.801E-02 4.144E-02 13.69
30660 8.529E-01 8.575E-01 3.406E-02 3.046E-02 10.58
35040 8.783E-01 8.820E-01 4.357E-02 3.757E-02 13.77
39420 8.489E-01 8.521E-01 3.292E-02 2.921E-02 11.27

(Continues)
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Table 5. Continued

Deluge Valve

43800 9.384E-01 9.428E-01 8.839E-02 7.921E-02 10.39
48180 9.126E-01 9.182E-01 6.163E-02 5.539E-02 10.12
52560 9.148E-01 9.197E-01 6.548E-02 5.646E-02 13.78
56940 8.882E-01 8.943E-01 4.861E-02 4.233E-02 12.93
61320 8.568E-01 8.643E-01 3.634E-02 3.218E-02 11.44
65700 8.134E-01 8.215E-01 2.626E-02 2.347E-02 10.62
70080 8.287E-01 8.411E-01 2.955E-02 2.691E-02 8.92
74460 8.227E-01 8.304E-01 2.809E-02 2.494E-02 11.22
78840 8.133E-01 8.193E-01 2.588E-02 2.313E-02 10.62
83220 8.257E-01 8.445E-01 2.769E-02 2.758E-02 0.41
87600 8.834E-01 8.919E-01 4.564E-02 4.129E-02 9.51
RE = 10.69

Automatic valve 2

0 5.970E-03 5.970E-03 0 0
4380 1.077E-01 1.101E-01 1.859E-01 1.720E-01 7.51
8760 1.940E-01 1.982E-01 3.092E-01 2.784E-01 9.95
13140 2.647E-01 2.700E-01 3.387E-01 2.957E-01 12.71
17520 1.694E-01 1.742E-01 3.111E-01 2.692E-01 13.48
21900 2.424E-01 2.482E-01 3.646E-01 3.173E-01 12.99
26280 1.309E-01 1.336E-01 2.019E-01 1.674E-01 17.10
30660 2.037E-01 2.080E-01 2.672E-01 2.278E-01 14.73
35040 1.124E-01 1.157E-01 1.958E-01 1.700E-01 13.18
39420 1.895E-01 1.938E-01 2.926E-01 2.527E-01 13.64
43800 2.727E-01 2.791E-01 4.824E-02 4.465E-02 7.43
48180 3.307E-01 3.381E-01 1.537E-01 1.395E-01 9.24
52560 6.195E-02 6.369E-02 4.984E-02 4.517E-02 9.37
56940 1.466E-01 1.505E-01 1.287E-01 1.144E-01 11.14
61320 2.168E-01 2.223E-01 1.911E-01 1.686E-01 11.76
65700 2.714E-01 2.779E-01 2.233E-01 1.945E-01 12.89
70080 1.934E-01 2.003E-01 2.015E-01 1.823E-01 9.52
74460 8.928E-02 9.148E-02 1.043E-01 8.853E-02 15.16
78840 1.663E-01 1.702E-01 2.027E-01 1.723E-01 15.01
83220 2.421E-01 2.511E-01 3.459E-01 3.223E-01 6.83
87600 1.575E-01 1.626E-01 2.970E-02 2.844E-02 4.24
RE = 10.85

Figure 11. Water deluge system unavailabilities after design optimization. [Color figure can be viewed at wileyonlinelibrary.com]
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The mission time of 87600 h was used in the calculation
while taking into account that the WDS is available on demand
whatever scenarios, and this is due to:

1. Redundancy of important components, if the first compo-
nent is in repair phase the second replaces it;

2. Periodic tests and maintenance devices;
3. Repair phase, when failure is detected components are

returning in good as new state.

Due to the complexity of the FT, it has to be noted that the
number of the minimal cut sets of the fault events whose
occurrence at the same time ensures that the unavailability of
the system occurs is 177:

Table 4 shows the number of minimal cut sets and the con-
tribution percentages by order, where the minimal cut sets
order are “1,” “2,” “3,” and “5”. Examples of minimal cut sets
with high unavailability in each order at t = 87600 can be also
seen and as remarks the first minimal cut sets ranked in order
5 are related with pumps system, where it is important to be
supervised and controlled as recommended in NFPA 25 [46].

Analyzing WDS Using BBN
A BBN has been developed for analysing the unavailability

of deluge system with a depth probabilistic model, as shown
in Figure 9 by converting the FTA model in Figure 7 using the
algorithm described in section Mapping FTA by BBN.

All the events in fault tree are converted into components
parent nodes. The logical nodes are obtained using conditional
probabilities table CPT. All nodes have states yes and no.

For the first analysis, in order to compare results between
FTA and BBN, all components’ faults give the same failure
probability over time. Therefore, the unavailability graphs
obtained with the three methods are represented in Figure 8.
A small gap between BDD points and others can be noticed,
the mean square error between BBN and MC simulation results
being about 6.78273E-06. This prior results obtained by the
BBN are obtained with AgenaRisk ® software.

PIF of WDS Mapped into BBN
The Birnbaum’s PIF used to rank the components repre-

senting the maximum increase in risk when components are
failed compared to when components are working. As results,
four components were selected for this study, the most
influencing in the state of the system: deluge valve, level sen-
sor, automatic valve 2 and pressure sensor. Then, the selected
components using Birnbaum’s PIF allows the calculation of
their critical PIF over 87600 h for analysis more precisely the
behavior of each component beyond their Mean time to failure
(MTTF) to obtain the component that is particularly suitable
for prioritizing the decision in optimization actions. To take the
right decision insuring a high level of RAMS at real time, it is
very important to obtain this importance factors using BBN.

Using algorithm proposed in section Mapping PIF by BBN,
the PIF can be calculated in terms of posterior probability. An
evidence tolerance of 1% and inferences of WDS components
with “true” or “false” scenarios are considered. The posterior
probability gives a factor by which each node contributes to
the system failure. The example in Figure 10 shows the results
of system unavailability at t = 87600 h obtained by inferencing
in the system network using conditional probabilities knowing
that the selected components are in failure and / or in operat-
ing state. Then, it is observed that the unavailability of the sys-
tem is 11.28%, but when one of deluge valve or pressure
sensor are in failure state, the system is unavailable with 100%,
and when level sensor is in failure state the system is unavail-
able with 25.30%. However, these inferences in the system
network informed which components influence directly in the
system unavailability and must be selected for a PIF studies.

The PIFs are obtained from inference results and using
Eq. 12 for Birnbaum’s PIF and Eq. 13 for critical PIF.

The results of PIFs mapped into BBN obtained for the four
selected components are listed and validated with results
obtained using BDD in Table 5. A relative error is also calcu-
lated between the two methods of criticality PIF. It can be
observed from this table that the value of Birnbaum’s PIF
obtained by the BDD and BBN for each one of the compo-
nents over time are note significantly different. However, in
the case of criticality PIF, the differences between the two
methods are relatively small in some components such as
“level sensor with a mean relative error of 2.37%, and pressure
sensor with 3.15%”. An important difference is observed in the
other components with “10.69% for deluge valve and 10.85%
in automatic valve 2 Table 5”. The practical explanations for
these differences are related to the relative errors of the system
unavailability value obtained in Figure 8 that are used to calcu-
late criticality PIF in Eq. 13. The position of the component in
the network and the value after inference in BBN are also
considered.

Making-Decision and Updating Design
Once the results of PIF mapped in BBN are obtained and

through the expert opinion, the BBN is used for making-
decision to optimize the WDS design by adapting the network
and updating probabilities. From results of criticality PIF in
Table 5, it is clear that each component contributes in the sys-
tem unavailability at a knowing time interval. A redundancy
for the components ‘deluge valve, pressure control system and
level control system’ is required by creating new nodes in par-
allel to those already existing in the network. The probabilities
value of automatic valve 2 node is updated by changing in
parameter of maintenance task. This design change has to be a
principal target to maximize the RAMS of WDS.

Figure 11 illustrates the contribution of making-decision in
the optimization of the WDS performance and how the design
change of each component contributes by redundancy or
changing of maintenance task of other components in increas-
ing the availability of the system. Furthermore, the redundancy
of deluge valve plays a very important part to prevent against
system failure on demand. The pressure system redundancy is
also one of the key elements in this optimization because it
controls the pumps system. All these important changes
increase the availability of the WDS. As an example, for t = 0,
the value of WDS unavailability decreases from 5.22 10−3 to
2.8251 10−5, mainly due to the importance of deluge valve. At
t = 43800 h, the value of the unavailability decreases from
6.2163 10−2 to 7.3665 10−3, and, at t = 87600 h the system
availability increases from 8.8720 10−1 to 9.7976 10−1.

CONCLUSION
The current article demonstrated how Bayesian belief net-

works can be helpful for a depth study in reliability analysis
for a sensitive safety system that are difficult to analyze, techni-
cally complicated need a high level of RAMS. This article also
illustrated how to modelling water deluge system unavailability
one of the most important safety system implemented in LPG
storage area with a fault tree for a better manipulating depen-
dencies between components. Probabilistic importance factors
were mapped using Bayesian belief network for decision-
making in design optimization and compared with factors cal-
culated using a deterministic approach.

Additionally, effectiveness and adequacy of mapping PIFs
using BBN have been improved on the basis of prior results
comparison with posterior results obtained after design chang-
ing. The design changes using BBN show that the components
ranked by PIFs mapped by BBN contribute most to the system
unavailability. Hence, to improve RAMS of the WDS, the focus
should be on the better reliability of components by changing
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in parameters of maintenance tasks and by introducing redun-
dancy in other components. The design optimization in this
article has brought as results increasing in WDS availability,
thus ensuring high safety in LPG storage area.

For future works, the developments could be focused on
using Monte Carlo Markov Chains (MCMC) by dynamic Bayes-
ian networks algorithms in reliability analysis, and also study-
ing multi-state node behaviors and comparing results obtained
by BBN and Universal Generating Function (UGF) using
python programming.
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