

الجمهــوريـــة الجزائــريـــة الديمقــراطي ـة الش République Algérienne Démocratique et Populaire وزارة الت<u>عاي</u> والب<u>ح</u>ي والب<u>ح</u>

جامعة و هران 2 محمد بن أ حمد Université d'Oran 2 Mohamed Ben Ahmed

معهد الصيانة و الأمن الصناعي Institut de Maintenance et de Sécurité Industrielle

Département de Maintenance en Instrumentation

MÉMOIRE

Pour l'obtention du diplôme de Master

Filière : Génie Industriel

Spécialité : Ingénierie de la Maintenance en Instrumentation

Thème

Conception et réalisation d'un système

photovoltaïque alimentant et une maison

rurale.

Présenté et soutenu publiquement par :

HASSANE Amel

OTMANE Ilias

Devant le jury composé de :

Nom et Prénom	Grade	Etablissement	Qualité
LABAIR Hakima	MCB	IMSI-Univ. D'Oran2	Présidente
ChOUITEK Mama	MCA	IMSI-Univ. D'Oran2	Encadreur
MIMOUNI Chahinaze	MCB	IMSI-Univ. D'Oran2	Examinatrice

2023/2024

Remerciements

Je remercie ALLAH le Tout-puissant de m'avoir donner le courage, la volonté et la patience de mener à terme ce présent travail.

Je souhaite exprimer ma plus profonde gratitude à mon encadreuse Mama. Chouitek.... pour son soutien, ses conseils avisés et son accompagnement tout au long de la réalisation de ce mémoire.

Je tiens également à remercier chaleureusement l'ingénieur de l'entreprise ENIE Mr. BENDAOUDI SOFIANE pour son aide précieuse et son expertise.

Je remercie sincèrement les membres du jury pour le temps qu'ils ont consacré à évaluer ce travail et pour m'avoir donné l'opportunité de le soutenir.

Enfin, un immense merci à nos familles pour leur soutien constant et leur compréhension tout au long de ce parcours. Merci également à toutes les personnes qui ont contribué, de près ou de loin, à la réalisation de ce projet.

Dédicace

Je tiens à remercier Allah de m'avoir donné le courage, la santé, et la volonté afin de pouvoir réaliser ce modeste travail.

À mes plus grands soutiens et sources d'inspiration, je dédie ce travail avec tout mon amour et ma reconnaissance infinis.

À ma mère « **ZOUICHE** .**A** »qui a toujours été mon port d'attachement et ma boussole merci pour ton amour inconditionnel, ton dévouement et ton soutien inébranlable . tu as été la lumière qui a éclairé mon chemin dans les moments sombres et tu as toujours cru en moi ,même lorsque je doutais .

À mon père « **HASSANE Mohammed** » qui m'a appris l'importance du travail acharne , de la persévérance et de l'honnêteté , je suis reconnaissante pour tes conseils avisé et ton soutien sans faille . tu m'ais inspiré à viser plus haut et à pour suivre, je te suis infiniment reconnaissante pour ton soutien indéfectible, ta confiance en moi et ton

amour.

À mes frères « **Djamile**, **Necer et sa femme**, **Yamina**, **Soumai**, **Yousaufe** » Puissiez-vous toujours être entourées de bonheur et de succès.

À mes enfants « **Taj addin , Islam , Fedaa , Ghofrane, Oussaid , Nedjm eddine** » qui ont rempli ma vie de tant de bonheur et de joie .

À mes très chères amies « **Bakhta M,Sihame .Z , Kenza. B ,Imane .O** »qui ont été mes piliers dans les moments difficiles et mes partenaires de fête dans les moments de joie , merci pour votre amitié sincère , votre soutien sans faille et votre amour inconditionnel .

À mes professeurs du lycée « **K.Amiche** , **R. Zaroulai** » merci pour votre éducatiin et votre confiance en mes capacités , et merci pour vos efforts en mon nom et pour m'avoir toujours encouragé .

À Mes tous mes amis « Amira ,bouchar ,wissal ,manel ,marwa ,khadra fatima , chaimaa , chahre zed , wissam,ilyes , abd elhak , mostaf, imad eddine ,Anouar »merci pour ton amitié .

À tous les amies collègues de l'IMSI et tous ceux qui m'estime et pense à moi.

HASSANE Amel

Dédicace

Je dédie ce travail à ma très chère mère, pour son amour inconditionnel et son soutien indéfectible tout au long de ce parcours.

À mon cher père, pour ses encouragements constants et pour m'avoir toujours soutenu.

À tous mes amis, ceux que je connais depuis longtemps et ceux que j'ai rencontrés au cours de ces cinq années à l'université, Un remerciement spécial à mes frères, qui se reconnaîtront.

Sans oublier mes deux grands-mères et a toute la famille OTMANI.

OTMANE Ilias

Résume

Le mémoire se concentre sur l'énergie photovoltaïque et son application dans les régions isolées, illustré par l'exemple d'une maison rurale où le système est dimensionné en fonction des besoins énergétiques spécifiques et des conditions météorologiques locales. Une simulation à l'aide de PVsyst est réalisée pour évaluer la performance du système. L'étude conclut en recommandant des composants adaptés et des améliorations pour assurer la fiabilité et la durabilité des systèmes photovoltaïques, contribuant ainsi à un avenir plus durable et optimisé grâce aux énergies renouvelables.

Mots clés : systèmes photovoltaïques, besoin énergétique, maison rurale, condition météorologiques, simulation, énergies renouvelables.

Abstract

The research centers on photovoltaic energy and its application in isolated regions, illustrated by the example of a rural house where the system is sized according to specific energy needs and local meteorological conditions. A simulation using PVsyst evaluates the system's performance. The study concludes by recommending suitable components and enhancements to ensure the reliability and durability of photovoltaic systems, thereby contributing to a more sustainable and optimized future through renewable energies.

Keywords: photovoltaic energy, isolated regions, renewable energies, meteorological conditions.

ملخص

هذا البحث يتمحور حول استغلال الطاقة الشمسية بتحويلها لطاقة كهربائية مع توضيح كيف تتم هذه العملية وشرح لكل مكونات هذا النظام. مبرزين لاستعمالاته الفعالة في المناطق المعزولة من خلال المثال المعروض في منزل ريفي معزول، حيث قمنا بدراسة لتزويد هذا المنزل بالطاقة الشمسية من خلال ادراج احتياجات الطاقة اليومية وبيانات الطقس للمنطقة المدروسة. ثم قمنا بمحاكاة لهذا النظام باستخدام برنامج مخصص لمحاكاة أنظمة الطاقة الشمسية وتحصلنا على نتائج اتاحت لنا اقتراح تعديلات وتحسينات على نظام تزويد منزلنا المعزول بالطاقة الشمسية وحدها لتوليد الكهرباء

كلمات مفتاحية: الطاقة الشمسية، لطاقة كهر بائية، المناطق المعزولة، بيانات الطقس، محاكاة، طاقة نظيفة ومتجددة.

Table de matières

Remerci	ements
Dédicace	e
Dédicace	e
Résume	
Abstract	
ملخص	
Introduc	tion générale1
I. Etu	de théorique d'un système photovoltaïque4
Introd	luction
I.1	.Energie photovoltaïque4
A.	Définition4
B.	Rayonnement solaire
C.	Différents types de rayonnement4
D.	Différents types de systèmes photovoltaïques5
Γ	D.1 Les systèmes autonomes
Γ	D.2 .Les systèmes hybrides
Γ	D.3 Les systèmes connectés au réseau7
I.2	.Effet photovoltaïque
I.3	.Principe de la conversion photoélectrique9
I.4	.Avantages et Inconvénients de l'énergie Photovoltaïque9
I.5	.Composition du système solaire photovoltaïque10
I.6	.Principes de fonctionnement des panneaux solaires photovoltaïques10
А.	Générateur photovoltaïque10
B.	La cellule photovoltaïque11
E	3.1 .Définition d'une cellule photovoltaïque11
E	3.2 .Technologie des cellules solaires

Η	3.3	.Fabrication des cellules photovoltaïques1	2
H	3.4	Le matériau de base de la cellule photovoltaïque12	2
	a.	Silicium monocristallin12	2
	b.	Le silicium multi cristallin1	3
	c.	Le silicium amorphe 12	3
I	3.5	Principes de fonctionnement des cellules solaire Photovoltaïques 14	4
Η	3.6	les types cellule photovoltaïque1	5
	a.	Cellules solaires monocristallines10	6
	b.	Cellules solaires poly cristallines10	6
	c.	Cellules solaires amorphes1	7
	d.	Les cellules multi-jonctions à haut rendement1	8
	e.	Autres types de cellules	8
Η	3.7	.Caractéristiques d'une cellule photovoltaïque1	9
	a.	Caractéristique courant – tension (I-V) d'une cellule photovoltaïque1	9
	b.	Caractéristique puissance-tension (P-V)20	0
C.	Ту	pes d'assemblages électriques2	1
(C.1	.Assemblage de panneaux photovoltaïques en série2	1
(C.2	Assemblage de panneaux photovoltaïques en parallèle	2
(C.3	.Assemblage mixte (série / parallèle)	3
D.	Le	module photovoltaïque24	4
Ι	D.1	.Caractéristique de module PV2	5
	a.	Tension en circuit ouvert V _{CO} 2	5
	b.	Le courant de court-circuit20	6
	c.	Point de puissance maximale Pm:	6
	d.	Facteur de forme :20	6
	e.	Rendement de la cellule20	6
E.	M	odélisation d'une cellule photovoltaïque2	7

	E.]	1 .Paramètres d'une cellule PV	29
	:	a. Le courant de court-circuit	29
	1	b. La tension de circuit ouvert	29
		c. Association de Cellules Photovoltaïques	30
F.		Modélisation du générateur PV	31
G		Caractéristique I-V d'un générateur photovoltaïque	31
Η		Caractéristique P-V d'un générateur photovoltaïque	32
I.7		Etage d'adaptation	32
А		Convertisseur DC/DC (hacheur)	33
	A.	1 .Type des convertisseurs DC/DC	33
	A.:	2 .Modélisation des convertisseurs de puissance	34
	;	a. Convertisseur DC-DC Buck	34
	1	b. Convertisseur DC-DC boost	35
В		Convertisseur DC/AC (onduleur)	36
	B.	1 .Les types d'onduleurs	37
	B.2	2 . Principe de fonctionnement d'un onduleur	37
	В.	3 .La commande d'onduleur	38
	B.4	4 .Modélisation de l'onduleur	38
I.8		.Système de stockage	40
А	•	Les batteries	40
В	•	Les types de batteries	40
	B.	1 .Batteries au plomb	40
	В.2	2 .Batteries nickel-hydrure métallique, cadmium-nickel et lithium-ion	41
С	•	Charge et décharge	41
D	•	Le rôle de la batterie dans les systèmes isolés	42
E.	•	Le principe de fonctionnement des batteries	42
F.	. (Caractéristiques générales des batteries	42

G.	Modélisation du dispositif de stockage	
I.9	.Système de régulation	45
А.	Définition d'un régulateur	45
B.	Types des régulateurs de charge	46
F	B.1 .Régulateur shunt	46
F	B.2 .Régulateur type série	47
F	B.3 .Le régulateur (MLI)	48
F	B.4 .Le régulateur MPPT	
C. 0	Comparaison de différentes technologies de régulateurs	49
I.10	.Méthodes de pompages	50
А.	Pompage direct « au fil du soleil »	50
B.	Pompage avec stockage d'énergie	
I.11	.Moteur électrique	51
А.	Moteur à courant continu	51
B.	Moteur à courant alternatif	52
I.12	Types des pompe	52
А.	Pompe volumétrique	52
B.	Pompe centrifuge	53
I.13	. Position de pompe	54
I.14	. Choix d'une pompe	54
I.15	.Electronique de commande	55
А.	.Convertisseur DC/DC	55
B.	Convertisseur DC/AC	55
Concl	lusion :	56
II- Din	mensionnement du système à simuler	58
Introd	luction	58
II.1	Présentation de la maison rurale	

A.	Localisation géographique	59
B.	Description de la maison rurale	. 59
II.2	Partie 1. Maison et poulailler	59
A.	Description de cette partie	. 59
B.	L'estimation des besoins journaliers en électricité	59
C.	Le choix des panneaux solaires pour cette installation	. 61
D.	Détermination de la capacité et le choix de la batterie	66
E.	Choix du régulateur	. 69
F.	Choix de l'onduleur	70
G	Dimensionnement des câbles	. 71
H	Résultats et composants de cette partie	. 73
II.3	Partie 2. Le puits	74
A.	Description de cette partie	.74
B.	Estimations des besoins en eau	74
C.	Calcule de la hauteur manométrique totale	. 74
	C.1 Dimensionnement de la conduite d'eau	.75
	C.2 Calcule les pertes de charge linéaire	. 76
	C.3 Calcule les pertes de charge singulières	. 77
D.	Détermination de l'énergie hydraulique	. 78
E.	Détermination de l'énergie électrique	78
F.	Choix de la pompe	78
G	Choix d'onduleur	80
H.	Calcule de la puissance crête	.81
I.	Choix des panneaux solaires	. 81
J.	Capacité du réservoir	82
K.	Dimensions du câblage	83
L.	Résultats et composants de cette partie	. 83

Conc	lusio	n	.84
III-	Simu	lation et résultats	. 86
Intro	duction	on	. 86
III.1	Etı	ides des logiciels utilises	. 86
A.	Pro	ésentation du logiciel Meteonorm 8.0	.86
B.	Ut	ilisation du logiciel Meteonorm 8.0	86
C.	Ré	sultats et données météorologiques	.88
	C.1	Rayonnement mensuel	88
	C.2	Rayonnement global journalier	. 89
	C.3	Température mensuelle	. 89
	C.4	Température journalière	. 89
	C.5	Précipitation	90
	C.6	Durée d'insolation	. 90
	C.7	Tableau de données récapitulatives	. 90
III.2	Pro	ésentation du logiciel PVsyst 7.3	. 90
A.	Int	erface du logiciel	.91
	A.1	Couplé au réseau	92
	A.2	Isolé avec batteries	. 92
	A.3	Pompage	. 92
	A.4	Bases de données	.92
	A.5	Outils	. 93
B.	Lo	calisation géographique du site d'étude	.93
III.3	Sir	nulation de la ferme rurale	. 93
A.	Ch	oix du nom et localisation	.94
B.	Or	ientation	.94
C.	Dé	termination des besoins utilisateur	95
D.	Dé	finir le système	.96

Ľ	D.1 Caractéristiques du pack de batteries	
Γ	D.2 Les caractéristiques du champ photovoltaïque	
E.	Lancer la simulation	
F.	Résultats et discussion	
G.	Solutions	
III.4	simulation du système de forage	
А.	Choix du nom et localisation	
B.	Besoins d'eau	107
C.	Définir le système	
D.	Lancer la simulation	110
E.	Résultats et discussion	
F.	Solution	115
III.5	Comparaison entre le dimensionnement et la simulation	
Concl	usion	
Conclusi	ion générale	
Annexe.		121
Bibliogra	aphique	

Liste des figures

Chapitre I

Figure I.1 : Les différents types de systèmes photovoltaïques autonomes1
Figure I.2 : Schéma d'un système de pompage au fil de soleil1
Figure I.3 : Configuration du système hybride à bus continu1
Figure I.4 : Effet photovoltaïque1
Figure I.5 : Schéma de principe de la conversion photoélectrique1
Figure I.6 :Cellule monocristallin(a) et multi cristallin (b)1
Figure I.7 :Cellule amorphe
Figure I.8 : Fonctionnement d'une cellule photovoltaïque1
Figure I.9 : Représentation des niveaux d'énergie au voisinage de la jonction1
Figure I.10 : Cellule photovoltaïque
Figure I.11 : Cellules solaires poly cristallines
Figure I.12 : Cellules solaires amorphes
Figure I.13 : Photovoltaïque à concentration et Schéma de principe d'un concentrateur photovoltaïque.
1
Figure I.14 : Cellules flexibles
Figure I.15 : Caractéristique courant -tension d'une cellule photovoltaïque1
Figure I.16 : Caractéristique puissance-tension
Figure I.17 : Branchement de panneaux en série1
Figure I.18 : Branchement de panneaux en parallèle1
Figure I.19 : Branchement de panneaux mixte
Figure I.20 : Module photovoltaïque1
Figure I.21 : Schéma synoptique d'un générateur PV1
Figure I.22 : Caractéristique de P=f(V) d'un module photovoltaïque1
Figure I.23 : Caractéristique de I=f(V) d'un module photovoltaïque1
Figure I.24 : Schéma électrique équivalent d'une cellule PV, modèle à une diode
Figure I.25: Caractéristiques de cellules photovoltaïques en série1
Figure I.26 : Caractéristiques de cellules photovoltaïques en parallèle1
Figure I.27 : Schéma électrique équivalent d'un générateur PV, modèle à une diode1
Figure I.28 : Caractéristique courant- tension d'un générateur photovoltaïque1
Figure I.29 : Caractéristique puissance- tension d'un générateur photovoltaïque1
Figure I.30 : Schéma des convertisseurs DC-DC couramment utilisés : (a) : Boost (b) : Buck (c) :
Buck-Boost1
Figure I.31 : Montage d'un convertisseur buck
Figure I.32 : Montage d'un convertisseur boost
Figure I.33 : Schéma de Principe d'un Onduleur Triphasé En Pont1
Figure I.34 : Onduleur de tension triphasé
Figure I.35 : Schéma électrique équivalent de l'onduleur de tension1
Figure I.36 : Modèle R-C de la batterie1
Figure I.37 : Schéma équivalent de <i>nb</i> éléments en série
Figure I.38 : Modèle CIEMAT de la batterie au plomb sous Simulink1
Figure I.39 : Paramètres de régulateur de charge 1
Figure I.40 : Conception d'un régulateur shunt1
Figure I.41 : Schéma fonctionnel du régulateur shunt1
Figure I.42 : Conception d'un régulateur série

Figure I.43 : Système de pompage d'eau solaire PV à couplage direct1
Figure I.44 : Système de pompage d'eau solaire PV avec stockage1
Figure I.45 : Diagramme du pompage PV par pompe à DC1
Figure I.46 : Diagramme du pompage PV par pompe à AC1
Figure I.47 : Pompe à déplacement positif
Figure I.48 : Pompe centrifuge
Figure I.49 : Convertisseur DC/AC.

Chapitre II

Figure II.1 : Moyenne de l'irradiation directe sur l'Algérie1
Figure II.2 : Exemple de panneau solaire
Figure II.3 : Plaque signalétique de panneau utilisé1
Figure II.4 : Photo du montage des panneaux solaires câblés en parallèle et en séries1
Figure II.5 : Tableau des facteurs de correction selon la température1
Figure II.6 : L'effet du DoD sur la durée de vie d'une batterie1
Figure II.7 :Photo de la batterie Rolls 5000 12CS1
Figure II.8 : photo du montage des batteries branchés en série et en parallèle1
Figure II.9 : Photo de régulateur1
Figure II.10 : photo d'onduleur Smatripower X utilisé
Figure II.11 : Schéma de montage des composants de cette partie d'installation PV1
Figure II.12 : Schéma représente les paramètres de HMT1
Figure II.13 : Schéma représente les paramètres de notre cas d'étude1
Figure II.14 : Les coefficients des pertes de charge singulières en cm
Figure II.15 : Schéma durée d'insolation
Figure II.16 : Choix d'une pompe selon la hauteur et le débit demandés1
Figure II.17 : Photo de notre pompe
Figure II.18 : Photo d'onduleur Sunny Boy 3.0
Figure II.19 : Schéma du montage de nos 16 panneaux en série et parallèle1
Figure II.20 : Schéma des composants de notre pompage solaire1

Chapitre III

Figure III.1 : Localisation géographique de site d'étude dans Meteonorm 81
Figure III.2 : Définition d'inclinaison et plage d'années.
Figure III.3 : Définir format de sortie et exporter les résultats
Figure III.4 : Schéma du rayonnement global
Figure III.5 : Schéma du rayonnement global journalier
Figure III.6 : Schéma de la température mensuel
Figure III.7 : Schéma de la température journalière
Figure III.8 : Schéma de la précipitation.
Figure III.9 : Tableau de données récapitulatives de Bordj albaal
Figure III.10 : Interface du logiciel PVsyst 7.3.
Figure III.11 : Etape d'ajouter un nouveau site dans PVsyst à partir de Meteonorm
Figure III.12 : Première étape pour un projet PVsyst d'installation PV autonome1
Figure III.13 : Etape de choix du nom et de la localisation du projet
Figure III.14 : Choix d'orientation.
Figure III.15 : Définition des besoins énergétiques de l'utilisateur

Figure III.16 : Distribution horaires des besoins énergétiques.	
Figure III.17 : Première étape à faire dans l'interface du « système »	
Figure III.18 : Définir les caractéristiques de stockage1	
Figure III.19 : Choix des paramètres du champ PV et régulateur.	
Figure III.20 : Configuration typique d'un système isolé par PVsyst 7.3	
Figure III.21 : Paramètres des pertes1	
Figure III.22 : Horizon du bordj albaal1	
Figure III.23 : Lancement de la simulation	
Figure III.24 : Schéma indice de performance et fraction solaire	
Figure III.25 : Energie incidente de référence dans le plan des capteurs solaires	
Figure III.26 : Facteurs de la production et pertes	
Figure III.27 : Bilans et résultats principaux1	
Figure III.28 : Diagramme des pertes pour cette simulation	
Figure III.29 : Besoins de l'utilisateur et distribution horaire	
Figure III.30 : Rapport de simulation de première partie1	
Figure III.31 : Choix de la conception de notre projet1	
Figure III.32 : Interface du projet « pompage »1	
Figure III.33 : Définir le circuit hydraulique de pompage1	
Figure III.34 : Définir les besoins d'eau et pression	
Figure III.35 : Pré-dimensionnement du système de pompage1	
Figure III.36 : Outil d'aide au choix de pompe par couleurs1	
Figure III.37 : Choix de notre pompe1	
Figure III.38 : Choix du module PV1	
Figure III.39 : Lancement de la simulation1	
Figure III.40 : Indice de performance 1	
Figure III.41 : Production d'eau selon l'irradiation par jour1	
Figure III.42 : Facteurs de production et pertes	
Figure III.43 : Bilans et résultats principaux1	
Figure III.44 : Diagramme des pertes de charge 1	
Figure III.45 : Rapport de simulation de deuxième partie1	

Liste des tableaux

Chapitre I

Tableau I.1 : Formules de dimensionnement des valeurs de L et C des convertisseurs DC-DC. 1
Tableau I.2 : Comparaison de performances de différents types de régulateurs. 1
Chapitre II

Tableau II.1 : Chaque pièce et leur équipement électrique. 1			
Tableau II.2 : Bilan de puissance électrique. 1			
Tableau II.3 : Consommation de la maison et le poulailler. 1			
Tableau II.4 : Tensions du système correspondantes à chaque intervalle de puissance crête1			
Tableau II.5 : Caractéristiques du panneau utilisé. 1			
Tableau II.6 : Caractéristiques de la batterie choisie. 1			
Tableau II.7 :Caractéristiques de régulateur à choisir. 1			
Tableau II.8 : Caractéristiques d'onduleur à choisir. 1			
Tableau II.9 : Référence du câblage entre les équipements. 1			
Tableau II.10 : Les composants de notre installation PV. 1			
Tableau II.11 : Résume des besoins d'eau pour cette partie. 1			
Tableau II.12 : Caractéristique du pompe « Grundfos SP 9-11 ». 1			
Tableau II.13 : Caractéristiques d'onduleur « Sunny Boy 3.0 ».			
Tableau II.14 : Les dimensionne du réservoir. 1			
Tableau II.15 : Résume des composants et résultats pour cette partie d'une pompe solaire			
Chapitre II			

Tableau III.1 :La comparaison des résultats pour le puits	. 1
Tableau III.2 : La comparaison des résultats pour la maison et poulailler	. 1

Indice	Mot clé	Unité
PV	Photovoltaïque	/
GPV	Générateur photovoltaïque	/
MPPT	Suivi du Point de Puissance Maximum	/
Ir	Valeur moyenne d'irradiation	[KWh/m2/j]
DC	Courant continu	/
AC	Courant alternatif	/
Vmp	Tension à Puissance Maximale	[V]
Imp	Courant à Puissance Maximale	[A]
ETM	Evapotranspiration maximale	/
PR	Indice de performance	/
Pon	La puissance de l'onduleur	[A]
STC	Conditions de Test Standard	$[W/m^2, °C]$
Ν	Dopée négativement	/
Р	Dopée positivement	/
Vpn	Tension de la jonction PN	[V]
Si	Silicium	/
Mono	Monocristallin	/
Poly	Polycristallin	/
PVsyst	Logiciel de simulation pour les systèmes photovoltaïques	/
Inverter	Onduleur	/
Isc	Courant de Court-Circuit	[A]
Voc	Tension en Circuit Ouvert	[V]
Ce	Capacité d'un élément batterie	[Ah]
DoD	Profondeur de Décharge	%

Introduction générale

Introduction générale

Le temps avance et l'évolution se poursuit chaque jour, entraînant avec elle une augmentation de nos besoins en énergie pour suivre ces progrès. Cependant, les dommages infligés à notre planète augmentent également, dans un contexte où nos demandes croissantes en électricité proviennent de méthodes de production polluante et non durables.

L'avènement des énergies renouvelables représente une étape cruciale dans notre quête d'une transition vers un système énergétique plus durable et respectueux de l'environnement. Les énergies renouvelables, telles que l'énergie solaire, éolienne, hydraulique et biomasse.

Dans cette mémoire on va préciser sur L'énergie photovoltaïque qui représente une innovation majeure dans le domaine des énergies renouvelables, offrant une solution prometteuse pour répondre aux besoins croissants en électricité tout en réduisant notre dépendance d'énergie fossile. Cette forme d'énergie, qui convertit la lumière du soleil en électricité, présente de nombreux avantages en termes de durabilité environnementale, d'accessibilité et de fiabilité.

D'autre part, les zones rurales ont souvent été négligées en termes d'infrastructures électriques en raison de leur éloignement géographique, de leur faible densité de population et de leur coût élevé de développement et de maintenance des réseaux électriques.

Cependant, l'électrification rurale est devenue une priorité mondiale en raison de l'amélioration des conditions de vie et de la promotion d'un développement durable. Les sources d'énergie utilisées pour l'électrification rurale varient en fonction des ressources disponibles localement et des considérations environnementales, et peuvent inclure l'énergie solaire.

Exploitant l'énergie solaire, abondante et renouvelable, ces systèmes peuvent fournir une source d'électricité décentralisée, propre et fiable, adaptée aux besoins spécifiques des communautés rurales. Les panneaux solaires, associés à des onduleurs et des batteries de stockage, permettent de créer des systèmes autonomes capables de fonctionner indépendamment des réseaux électriques centralisés.

L'importance des systèmes photovoltaïques réside dans plusieurs avantages clés : Durabilité et respect de l'environnement :Les systèmes photovoltaïques réduisent la dépendance aux combustibles fossiles et diminuent les émissions de gaz à effet de serre, contribuant ainsi à la lutte contre le changement climatique.

1

Introduction générale

Autonomie énergétique : En fournissant une source d'énergie locale, les systèmes photovoltaïques renforcent l'autonomie des communautés rurales et leur résilience face aux interruptions du réseau électrique.

Coûts réduits : Les avancées technologiques et les économies d'échelle ont considérablement réduit les coûts des composants photovoltaïques, rendant ces systèmes plus accessibles et économiques à long terme.

Développement économique : L'accès à une électricité fiable permet le développement d'activités économiques locales, l'amélioration des services éducatifs et de santé, et la création d'emplois.

Ce mémoire sera constitué de trois chapitres :

Le premier chapitre sera consacré à l'étude théorique d'un système photovoltaïque : Nous avons parlé des principes de fonctionnement des panneaux solaires, des composants d'un système photovoltaïque et de leurs caractéristiques, et avons donné une modélisation mathématique de chaque composant.

Dans le deuxième chapitre, nous présentons le dimensionnement et la conception de deux systèmes photovoltaïques pour notre maison rurale à **BORdJ ALBAAL**, en identifiant les différents composants Mentionner les données météorologiques et les changements saisonniers.

Le dernier chapitre, se concentre sur l'étude de la simulation numérique. Nous présentons d'abord les logiciels utilisés tels que PV SYST. Ensuite, nous présentons les résultats de notre simulation, et enfin, nous les comparons avec ceux théoriques dans le chapitre précédent.

On clôturera ce mémoire avec une conclusion générale et quelques perspectives.

2

Chapitre1 :

Etude théorique

d'un système photovoltaïque

I. Etude théorique d'un système photovoltaïque

Introduction

Dans ce premier chapitre de notre étude sur les systèmes photovoltaïques, nous plongerons dans les profondeurs de la théorie qui alimente ces technologies innovantes , En examinant les concepts fondamentaux de la conversion de l'énergie solaire en électricité, nous établirons les bases nécessaires pour comprendre le fonctionnement complexe des systèmes photovoltaïques , De la physique des semi-conducteurs à la modélisation des cellules solaires, nous explorerons les principes qui guident la conception et l'optimisation de ces systèmes énergétiques du futur.

I.1. Energie photovoltaïque

A. Définition

L'énergie solaire photovoltaïque est une forme d'énergie renouvelable qui produit de l'électricité par la transformation du rayonnement solaire grâce à une cellule photovoltaïque. Plusieurs cellules sont reliées entre elles et forment un panneau solaire (ou module) photovoltaïque. Ces derniers sont regroupés et sont appelés champ photovoltaïque [1].

B. Rayonnement solaire

Malgré la distance considérable qui sépare le soleil de la terre 150,10 Km, la couche terrestre reçoit une quantité d'énergie importante 180,10 GW, c'est pour ça que l'énergie solaire se présente bien comme une alternative aux autre sources d'énergie. Cette quantité d'énergie quittera sa surface sous forme de rayonnement électromagnétique compris dans une longueur variant de 0,22à 10 μ m, l'énergie associe ace rayonnement solaires décomposé approxime activement comme suit:

- 9% dans la bandées ultraviolets (<à0,4 μm)
- 47% dans la bande visibles (0,4 à0,8 μm)
- 44% dans la bandées infrarouges (> à0,8 μm)[2].

C. Différents types de rayonnement

En traversant l'atmosphère, le rayonnement solaire est absorbé et diffuse au sol,on Distingue plusieurs composantes :

a) Rayonnement direct

Flux solaire sous forme des rayons parallèles provenant de disque soleil sans avoir été Dispersé par l'atmosphère.

b) Rayonnement diffus

C'est la partie du rayonnement provenant du soleil, ayant subi multiples réflexions (dispersions), dans l'atmosphère.

c)Rayonnement réfléchi

C'est la partie de l'éclairement solaire réfléchie parle sol, ce rayonnement dépend directement de la nature du sol (nuage, sable&). Il se caractérise par un coefficient propre de la nature de lien appelé albédo (ϵ) $0 \le \epsilon \le 1[3]$.

D. Différents types de systèmes photovoltaïques

On rencontre généralement trois types de systèmes photovoltaïques, les systèmes autonomes, les systèmes hybrides et les systèmes connectés à un réseau [4]. Les deux premiers sont indépendants du système de distribution d'électricité, en les retrouvant souvent dans les régions éloignées[5].

D.1 Les systèmes autonomes

Ces systèmes photovoltaïques sont installés pour assurer un fonctionnement autonome sans recours à d'autres sources d'énergie. Généralement, ces systèmes sont utilisés dans les régions isolées et éloignées du réseau. Les différents types de systèmes photovoltaïques autonomes sont décrits sur la figure (I.1) qui traduit les différentes possibilités offertes : couplage direct à ne charge adaptée ou couplage avec adaptateur d'impédance MPPT (Maximum Power Point Trekking), fonctionnement au fil du soleil ou avec stockage d'énergie électrique.[5]

Figure I.1 : Les différents types de systèmes photovoltaïques autonomes.

Le couplage direct implique un fonctionnement au fil du soleil, donc à puissance essentiellement variable au cours de la journée. Les charges typiques à courant continu qui peuvent satisfaire le critère (tension constante à puissance variable) sont les accumulateurs électrochimiques. Les charges alternatives sont les pompes à eau, c'est le pompage au fil du soleil, le stockage est néanmoins présent sous la forme d'eau emmagasinée (dans un réservoir).

Dans la plupart des cas une adaptation d'impédance doit être réalisée en insérant entre le générateur et sa charge électrique un dispositif électronique qui permet de forcer le système à fonctionner à sa puissance maximale.

Exemple : Le pompage au fil du soleil.

Le pompage au fil du soleil permet d'avoir un système photovoltaïque plus simple comme nous montre la figure ci-dessous. Le stockage se fait de manière hydraulique, l'eau étant pompée, lorsqu'il y a suffisamment d'ensoleillement, dans un réservoir au-dessus du sol. Elle est ensuite distribuée par gravité au besoin (Figure I.2).[5]

Figure I.2 : Schéma d'un système de pompage au fil de soleil.

D.2 .Les systèmes hybrides

Les systèmes d'énergie hybride associent au moins deux sources d'énergie renouvelable aussi une ou plusieurs sources d'énergie classiques. Les sources d'énergie renouvelable, comme le photovoltaïque et l'éolienne ne délivrent pas une puissance constante, mais vu leurs complémentarités, leur association permet d'obtenir une production électrique continue. Les systèmes d'énergie hybrides sont généralement autonomes par rapport aux grands réseaux interconnectés et sont souvent utilisés dans les régions isolées. Les différentes sources dans un système hybride peuvent être connectées en deux configurations, architecture à bus continu et architecture à bus alternatif (Figure I.3).[5]

Figure I.3 : Configuration du système hybride à bus continu.

Dans la première configuration, la puissance fournie par chaque source est centralisée sur un bus continu. Ainsi, les systèmes de conversion d'énergie à courant alternatif (CA) fournissent d'abord leur puissance à un redresseur pour être convertie ensuite en courant continu (CC). Les générateurs sont connectés en série avec l'onduleur pour alimenter les charges alternatives. L'onduleur doit alimenter les charges alternatives à partir du bus continu et doit suivre la consigne fixée pour l'amplitude et la fréquence. La fonction spécifique du système de supervision est la commande de mise en marche et arrêt des générateurs et du système de stockage. L'avantage de cette topologie est la simplicité de commande. Dans la seconde configuration tous les composants du système hybride sont reliés à la charge alternative.[5]

D.3 Les systèmes connectés au réseau

Les systèmes de production d'énergie photovoltaïque connectés à un réseau sont une résultante de la tendance à la décentralisation du réseau électrique. L'énergie est produite plus près des lieux de consommation. Les systèmes connectés à un réseau réduisent la nécessité d'augmenter la capacité des lignes de transmission et de distribution. Il produit sa propre électricité et achemine son excédent d'énergie vers le réseau, auprès duquel il s'approvisionne au besoin, ces transferts éliminent le besoin d'acheter et d'entretenir une batterie. Il est toujours possible d'utiliser ceux systèmes pour servir d'alimentation d'appoint lorsque survient une panne de réseau[5].

I.2. Effet photovoltaïque

La production d'énergie photovoltaïque est une technologie utilisant l'effet photovoltaïque de l'interface de semi-conducteur et transformant l'énergie lumineuse directement en énergie électrique. Les cellules solaires sont les plus élément clé important de cette technologie. Après une série de cellules solaires encapsulées de protection, il pourrait former un module de cellule solaire de grande surface, couplé avec le contrôleur de puissance et d'autres composants pour former un dispositif de système photovoltaïque. Si la lumière brille sur les cellules solaires et est absorbée par l'interface du semi-conducteur, le photon qui est avec suffisamment d'énergie peut stimuler l'électron du covalent entre le silicium de type P et de type N pour produire un électron-trou. Avant le complexe d'électron et d'électron-trou qui est proche de la couche d'interface du semi-conducteur, il sera séparé l'un de l'autre par le courant électrique domaine de la charge d'espace. L'électron se déplacera dans la région N qui est à l'électricité positive, et l'électron-trou se déplacera dans la région qui est à l'électricité négative. Avec la séparation de charge de la couche d'interface du semi-conducteur, il produira une tension entre la région P et la région N. Pour les cellules solaires en silicium cristallin, une valeur typique de circuit ouvert la tension est de $0.5 \sim 0.6$ V. Plus il y a d'électrons-trous produits à l'interface du semi-conducteur, plus le courant électrique sera plus important. Plus l'énergie solaire absorbée par l'interface du semi-conducteur est importante et plus la surface des cellules solaires est grande, plus le courant électrique sera important lorsque le système travail[6].

Figure I.4 : Effet photovoltaïque.

I.3. Principe de la conversion photoélectrique

Lorsqu'un matériau est exposé à la lumière du soleil, les atomes exposés au rayonnement sont "bombardés" par les photons constituants la lumière, Les électrons des couches électroniques supérieures (appelés électrons des couches de valence) ont tendance à être "arrachés": si l'électron revient à son état initial, l'agitation de l'électron se traduit par un échauffement du matériau. L'énergie cinétique du photon est transformée en énergie thermique. Par contre, comme c'est le cas pour les cellules photovoltaïques, une partie des électrons ne revient pas à son état initial. Les électrons "arrachés" créent une tension électrique continue faible. Une partie de l'énergie cinétique des photons est ainsi directement transformée en énergie électrique : c'est l'effet photovoltaïque.

Toutefois, ce n'est qu'au cours des années 1950 que les chercheurs de la compagnie **Bell Téléphone,** aux Etats-Unis, parvinrent à fabriquer la première photopile (cellule solaire), qui constitue l'élément de base d'un système photovoltaïque.[7]

Figure I.5 : Schéma de principe de la conversion photoélectrique.

I.4 .Avantages et Inconvénients de l'énergie Photovoltaïque

•Avantage de l'énergie Photovoltaïque sont

• L'énergie PV est renouvelable et fiable car l'installation ne comporte pas de pièces mobiles.

• Le caractère modulaire des panneaux PV permet un montage simple et adaptable à des besoins énergétiques divers. Les systèmes peuvent être dimensionnés pour des applications de puissances allant du milliwatt aux centaines de mégawatts.

• Le coût de fonctionnement est très faible vu les entretiens réduits et il ne nécessite ni combustible, ni son transport, ni personnel hautement spécialisé.

• La technologie PV présente des qualités sur le plan écologique car le produit fini est non polluant et n'entraîne aucune perturbation du milieu.

• Longue durée de vie des panneaux solaires et pas de risques électriques pour les usagers[8].

•Les inconvénients de l'énergie PV sont :

• La fabrication du module PV relève de la haute technologie et requiert des investissements d'un coût élevé.

• Le rendement réel de conversion d'un module est faible, de l'ordre de 10-15 % avec une limite théorique pour une cellule de 28%. Les générateurs PV ne sont compétitifs par rapport aux générateurs diesel que pour des faibles demandes d'énergie en régions isolées.

• Lorsque le stockage de l'énergie électrique sous forme chimique (batterie) est nécessaire, le coût du générateur est accru.

• Le stockage de l'énergie électrique pose encore de nombreux problèmes.[8]

I.5 .Composition du système solaire photovoltaïque

Après avoir appris les principes de la production d'énergie solaire photovoltaïque, les scientifiques ont conçu un composant solaire photovoltaïque, et selon leurs fonctions respectives, ceux-ci établis pour produire de l'électricité.

Le système solaire photovoltaïque peut utiliser le module de cellule solaire pour produire directement l'énergie électrique par l'énergie solaire. La cellule solaire est un appareil qui peut réaliser la transformation de P-V par la caractéristique électronique des matériaux semiconducteurs, dans la majorité des zones hors réseau, l'appareil peut être facilement mis en œuvre comme un éclairage de vie alimenté par l'utilisateur. Cela peut être aussi avec le régional réseau électrique pour atteindre la complémentarité dans certains pays développe.

Le système PV2 est composé de cellules solaires carrées, d'une batterie, d'un contrôleur de charge, d'un onduleur, d'un AC Armoire de distribution d'énergie, un système de suivi solaire automatique, un système de dépoussiérage automatique, des modules solaires et d'autres équipements [6].

I.6. Principes de fonctionnement des panneaux solaires photovoltaïques

A. Générateur photovoltaïque

La conversion directe de la lumière en énergie électrique se fait par l'intermédiaire de composants électroniques à semi-conducteur, appelés cellules photovoltaïques (PV), dans

lesquels l'absorption des photons libère des électrons chargés négativement et des trous chargés positivement. Cette conversion est obtenue selon un processus dit "effet photovoltaïque" qui ne peut se produire que s'il existe une barrière de potentiel dans le semiconducteur, avant qu'il soit éclairé (Création de deux zones N et P à l'aide d'un dopage avec deux différentes impuretés). Quand on met le matériau sous un éclairement, les charges électriques, sont rendues mobiles par l'énergie des photons et par l'effet du potentiel électrique de la jonction qui a le rôle de séparer les charges positives des charges négatives. La caractéristique courant - tension (I-V) de la cellule varie avec l'intensité du soleil et de la température[9].

B. La cellule photovoltaïque

B.1 .Définition d'une cellule photovoltaïque

La cellule photovoltaïque ou encore photopile est le plus petit élément d'une installation photovoltaïque. Elle est composé de matériau semi-conducteur et transforme directement l'énergie lumineuse en énergie électrique.les cellules photovoltaïques sont constituées :

• D'une fine couche semi-conductrice (matériau possède une bande interdite, qui joue le rôle de la barrière d'énergie que les électrons ne peuvent franchir sans une excitation extérieure, et dont il est possible de faire varier les propriétés électroniques) tel que le silicium, qui est un matériau présentant une conductivité électrique relativement bonne.

- D'une couche antireflet permettant une pénétration maximale des rayons solaires.
- D'une grille conductrice sur le dessus ou cathode et d'un métal conducteur sur le dessous ou anode.

• Les plus récentes possèdent même une nouvelle combinaison de multicouche réfléchissant juste en dessous du semi-conducteur, permettant à la lumière de rebondir plus longtemps dans celui-ci pour améliorer le rendement.[10]

B.2 .Technologie des cellules solaires

Le Silicium est le semi-conducteur le plus utilisé pour la fabrication des cellules PV. Et l'un des matériaux le plus courant sur terre, c'est le sable, mais un haut degré de pureté estrequis pour en faire une cellule photovoltaïque et le procédé est coûteux. Selon les technologies employées, on retrouve le Silicium monocristallin avec un rendement de 16 à 18%, le Silicium Poly cristallin de rendement de 13 à 15%, le silicium amorphe présente une efficacité entre 5 et 10%. D'autres matériaux tels que l'Arséniure de Galium et le Tellurure de Cadmium qui sont en cours de test dans les laboratoires est présentent un rendement de (38%)[11].

B.3 .Fabrication des cellules photovoltaïques

Le silicium est le plus utilisé pour fabriquer les cellules photovoltaïques. Est l'obtient par réduction à partir de la silice, composé le plus abondant dans la croûte terrestre et notamment dans le sable ou le quartz. La première étape est la production de silicium dit métallurgique, pur à 98 % seulement, obtenu à partir de morceaux de quartz provenant de galets. Le silicium de qualité photovoltaïque doit être purifié jusqu'à plus de 99,999 %, ce qui s'obtient en transformant le silicium en un composé chimique qui sera distillé puis retransformé en silicium. Il est produit sous forme de barres nommées « Lingots » de section ronde ou carrée. Ces lingots sont ensuite sciés en fines plaques de 200 micromètres d'épaisseur qui sont appelées wafers. Après un traitement pour enrichir en éléments dopants et ainsi obtenir du silicium semi-conducteur de typeP ou N, les wafers sont métallisés : des rubans de métal sont incrustés en surface et reliés à des contacts électriques. Une fois métallisés les wafers sont devenus des cellules photovoltaïques [12].

B.4 .Le matériau de base de la cellule photovoltaïque

La filière silicium représente aujourd'hui l'essentiel de la production mondiale des panneaux photovoltaïque. Il s'agit d'un matériau extrêmement abondant, stable et non toxique. Cette filière est elle-même subdivisée en plusieurs technologies distinctes de part la nature du silicium employé et /ou sa méthode de fabrication. Cette filière comporte trois technologies : le silicium monocristallin et le silicium multi cristallin, silicium amorphe [10].

a. Silicium monocristallin

Lors du refroidissement, le silicium se solidifie en ne formant qu'un seul cristal de grande dimension. On découpe en suit le cristal en fines tranches qui donneront les cellules. Ces cellules sont en générale d'un bleu uniforme. Intense et brillant. Elles sont utilisées, mais ne sont pas majoritaires sur le marche de l'énergie photovoltaïque.

Le rendement du silicium monocristallin est plus élevé, il est compris entre 12 et 20% pour les cellules industrielles. Son cout élevé est aujourd'hui un handicap et le silicium monocristallin perd du terrain devant le silicium multi cristallin [10].

b. Le silicium multi cristallin

Le silicium multi cristallin (poly cristallin) est devenu aujourd'hui la technologie la plus utilisé (figure I.6). A elle seule elle représente près de 50% du marché. Ces cellule sont obtenues par couplage de cristaux de silicium, ce qui rend sa structure hétérogène, son rendement est légèrement inférieur au silicium monocristallin, il est copris entre 10 et 14% selon les fabricants. En revanche sa fabrication est beaucoup plus simple, les couts de production sont donc plus faible[10].

(b)

Figure I.6 :Cellule monocristallin(a) et multi cristallin (b).

c. Le silicium amorphe

Le silicium intégré dans les cellules a-SI n'a pas fait l'objet d'une cristallisation (figure I.7). Ses atomes sont donc agencés sans réelle organisation, ce qui leur permet de mieux capter la lumière (par rapport au silicium cristallin). Problème : les charges générées ont plus de difficultés pour se déplacer à cause de la désorganisation de la matière, ce qui se traduit par un mauvais coefficient de conversion. Par conséquent, leur rendement est faible.

La désorganisation atomique a d'autres conséquences : les électrons de valence des atomes de Si ne forment pas toujours des liaisons covalentes au sein du semi-conducteur. Il apparait alors des liaisons pendantes qui peuvent agir sur les propriétés électroniques du matériau. Pour limiter ce phénomène, les couches de silicium sont régulièrement passivées avec de l'hydrogène (a-Si : H). Des atomes d'hydrogène établissent des liaisons avec les électrons restés libres, et réduisent ainsi le nombre de liaisons pendantes.[10]

Figure I.7 :Cellule amorphe.

B.5 .Principes de fonctionnement des cellules solaire Photovoltaïques

L'effet photovoltaïque utilisé dans les cellules solaires permet de convertir directement l'énergie lumineuse des rayons solaires en électricité par le biais de la production et du transport dans un matériau semi-conducteur de charges électriques positives et négatives sous l'effet de la lumière. Ce matériau comporte deux parties, l'une présentant un excès d'électrons et l'autre un déficit en électrons, dites respectivement dopée de type N et dopée de type P. Lorsque la première est mise en contact avec la seconde, les électrons en excès dans le matériau N diffusent dans le matériau P.

La zone initialement dopée N devient chargée positivement et la zone initialement dopée P chargée négativement. Il se crée donc entre elles un champ électrique qui tend à repousser les électrons dans la zone N et les trous vers la zone P. Entre les deux zones se développe une jonction PN avec une barrière de potentiel [13].

Figure I.8 : Fonctionnement d'une cellule photovoltaïque.

Lorsque ce matériau est exposé à la lumière du soleil, les atomes exposés au rayonnement sont bombardés par les photons constituant la lumière, sous l'action de ce bombardement, les électrons des couches électroniques supérieures (appelés électrons des couches de valence) ont tendance à être arrachés/décrochés. Mais une partie de ces électrons ne revient pas à son état initial. Les électrons décrochés créent une tension électrique continue faible. Une partie de l'énergie cinétique des photons est ainsi directement transformée en énergie électrique : C'est l'effet photovoltaïque. La zone N est couverte par une grille métallique qui sert de cathode (contact avant) et surtout de collecteurs d'électrons, tandis qu'une plaque métallique (contact arrière) recouvre l'autre face du cristal et joue le rôle d'anode [13].

Lorsque les photons sont absorbés par le semi-conducteur, ils transmettent leur énergie aux électrons par collision, Si l'énergie transmise est supérieure à celle associée à la bande interdite du semi-conducteur, des paires électrons-trous sont alors crées dans cette zone de déplétion par arrachement des électrons. Sous l'effet d'un champ électrique E qui règne dans cette zone, ces porteurs libres sont drainés vers les contacts métalliques des régions P et N.

Il en résulte alors un courant électrique dans la cellule PV et une différence de potentiel (de 0,6 à 0,8 Volt) supportée entre les électrodes métalliques de la cellule, communément nommée tension de circuit ouvert fortement dépendante de la température. Le courant maximal PV se produit lorsque les bornes de la cellule sont court-circuitées. On parle alors de courant de court-circuit dépendant fortement du niveau d'éclairement [13].

Figure I.9 : Représentation des niveaux d'énergie au voisinage de la jonction.

B.6 .les types cellule photovoltaïque

Il existe différents types de cellules solaires photovoltaïques, et chaque type de cellules à un rendement et un coût qui lui est propre. Cependant, quel que soit leur type, leur rendement reste assez faible : de 5 à 22% de l'énergie qu'elles reçoivent.

Les cellules solaires peuvent être réparties en trois groupes, selon le matériau de base utilisé :

- Cellules monocristallines.
- Cellules poly cristallines.
- Cellules à couches minces.

Le groupe des cellules à couche mince compte les cellules amorphes au silicium et les cellules formées à partir d'autres matériaux, comme le tellurure de cadmium (Cd Te), le di séléniure de cuivre et d'indium (CIS) ou l'arséniure de gallium (Ga As). Dans la pratique, les cellules en silicium ont fini par s'imposer[14].

a. Cellules solaires monocristallines

Des blocs de silicium sont formés à partir de fonte de silicium ultra-pure. Dans un monocristal, le réseau cristallin complet est agencé de manière uniforme. Le bloc de silicium est découpé en rondelles de 200 à 300 mm d'épaisseur, appelées galettes (en anglais wafers). Pour permettre un usage optimal de la surface du module solaire, les cellules rondes sont découpées en éléments carrés. D'habitude, les cellules présentent une longueur d'arrêtée 152 mm La fabrication est conclue par le dopage, l'application des surfaces de contact et de la couche anti réflexion.

Possédant un rendement variant entre 15 et 18 %, les cellules monocristallines fabriquées industriellement sont les cellules ayant actuellement le rendement le plus élevé. Cependant, leur fabrication requiert plus d'énergie et de temps que celle des cellules poly cristallines. Ces cellules souffrent néanmoins des inconvénients :

- Méthode de production laborieuse et difficile, et donc très chère.
- Il faut une grande quantité d'énergie pour obtenir un cristal pur.
- Une durée d'amortissement de l'investissement en énergie élevée (jusqu'à 7 ans)[14].

Figure I.10 : Cellule photovoltaïque.

b. Cellules solaires poly cristallines

Le matériau de base est du silicium ultra-pur qui est porté à fusion. Mais pour la fabrication de cellules solaires poly cristallines, on ne cultive pas de monocristaux, mais la fonte de silicium est refroidie de façon contrôlée dans un moule carré.

Pendant le refroidissement, les cristaux s'orientent de manière irrégulière et forment la surface miroitante typique pour les cellules solaires poly cristallines. Les blocs de silicium carrés sont découpés en galettes de 200 à 300 mm d'épaisseur. La fabrication est conclue par le dopage, l'application des surfaces de contact et de la couche anti réflexion. La couche anti-réflexion offre à la cellule solaire sa surface bleue typique, car le bleu réfléchit le moins de lumière et en absorbe la plus grosse quantité. Les cellules solaires poly cristallines présentent un rendement entre 13 et 16 %.

Les cellules poly cristallines sont caractérisées par :

- Coût de production moins élevée.
- Nécessite moins d'énergie.
- Rendement de 13 % et jusqu'à 20 % en labo[14].

Figure I.11 : Cellules solaires poly cristallines.

c. Cellules solaires amorphes

Le terme amorphe vient du grec (a : sans, morphe : forme) et signifie qui n'a pas de forme. En physique, on appelle amorphes les éléments dont les atomes présentent des formes irrégulières. Si les atomes ont une structure ordonnée, on les appelle des cristaux.

Pour la fabrication de cellules solaires amorphes, on applique le silicium sur un matériau support, comme par exemple le verre. L'épaisseur du silicium s'élève alors à environ 0.5 à 2μ m.

Ainsi, non seulement la quantité de silicium requise est-elle assez faible, mais le découpage fastidieux des blocs de silicium n'est-il pas nécessaire. Le degré de rendement des cellules solaires amorphes se situe seulement à 6-8 %.[14]

Les inconvénients

- Coût de production bien plus bas.
- Rendement de seulement 5 % par module et 14% au laboratoire.
- Fonctionne sous de très faible éclairement

Figure I.12 : Cellules solaires amorphes.

Grâce à la technologie des nouveaux matériaux tel que le tellurure de cadmium(Cd Te), l'arséniure de gallium (Ga As) ainsi que le di séléniure de cuivre et d'indium (CIS) ont permis d'obtenir des photopiles ayant des rendements 38 % au laboratoire[14].

d. Les cellules multi-jonctions à haut rendement

Aujourd'hui, la plupart des cellules photovoltaïques inorganiques sont constituées d'une simple jonction PN. Dans cette jonction, seuls les photons dont l'énergie est égale ou supérieure à la bande interdite du matériau (notée E_g en eV) sont capables de créer des paires électron-trou. En d'autres termes, la réponse photovoltaïque d'une cellule simple jonction est limitée à l'énergie du photon.

Seule la proportion du spectre solaire dont l'énergie des photons est supérieure au gap d'absorption du matériau est utile, l'énergie des photons plus faible n'est donc pas utilisable. D'autre part, même si l'énergie des photons est suffisante, la probabilité de rencontrer un électron est faible. Ainsi, la plupart des photons traversent le matériau sans avoir transférer leur énergie. Une première réponse pour limiter les pertes est connue de longue date du point de vue technologique, il suffit d'utiliser des systèmes à plusieurs niveaux, en empilant des jonctions possédant des gaps décroissants, Ainsi il est possible d'exploiter le spectre solaire dans sa quasi-totalité avec des rendements de conversion très importants.[14]

e. Autres types de cellules

Il existe d'autres types de technologies photovoltaïques actuellement commercialisées ou encore à l'étude, les principales étant :

1. Photovoltaïque à concentration

Certaines cellules sont destinées à fonctionner avec des rayons solaires concentrés. Elles sont alors placées à l'intérieur d'un collecteur qui concentre la lumière du soleil sur les cellules au moyen d'une lentille. L'idée est d'utiliser le moins possible de matériau photovoltaïque semi-conducteur, et le plus possible de la lumière du soleil. Leur rendement se situe entre 20 et 30%.[14]

Figure I.13 : Photovoltaïque à concentration et Schéma de principe d'un concentrateur photovoltaïque.

2. Cellules flexibles

Basées sur un processus de production similaire à celui des couches minces, ces cellules sont constituées d'un dépôt de matière active sur un plastique fin, rendant le tout flexible. Cela ouvre la voie à une série d'applications, en particulier pour l'intégration aux bâtiments (toiture) et pour les applications domestiques.[14]

Figure I.14 : Cellules flexibles.

B.7 .Caractéristiques d'une cellule photovoltaïque

a. Caractéristique courant – tension (I-V) d'une cellule photovoltaïque

Figure I.15 : Caractéristique courant -tension d'une cellule photovoltaïque.

Comme nous le voyons sur la figure (**I.15**), la cellule solaire PV est caractérisée par la courbe I(V) non linéaire qui dépend particulièrement des conditions d'ensoleillement et de température. Cette courbe nous informe sur trois points importants :

- Le point de fonctionnement optimal PPM (la puissance maximale de la cellule).
- Le point du courant maximal (I_{SC}). Il se produit lorsque les bornes de la cellule sont court-circuit. Il est appelé courant de court-circuit (I_{SC}).

• Le point de la tension maximale de la cellule (V_{oc}), (environ 0.6 V) pour un courant nul. Cette tension est nommée tension de circuit ouvert (V_{oc}).[14]

b. Caractéristique puissance-tension (P-V)

La puissance crête d'une cellule PV, notée W_c (Watt crête) ou W_p (Watt peak) représente la puissance électrique maximum délivrée dans les conditions suivantes dites conditions standard:

- éclairement solaire de 1 kW / m2
- température de la cellule PV égale à + 25 °C.[14]

Figure I.16 : Caractéristique puissance-tension.

C. Types d'assemblages électriques

Les connections en série de plusieurs cellules augmentent la tension, tandis que la mise en parallèle accroît le courant en conservant la tension. Un assemblage mixte (série/ parallèle) est possible pour augmenter les deux paramètres simultanément. Dans tous les cas, la puissance électrique sera proportionnelle à la surface du module, c'est-à-dire augmente avec le nombre de cellules qui sont généralement identiques pour faciliter les processus industriels et optimiser le rendement des capteurs.[15]

C.1 .Assemblage de panneaux photovoltaïques en série

Le montage de panneaux photovoltaïques en série est l'option à retenir lorsque l'on souhaite additionner les voltages de chaque panneau en préservant un ampérage identique. On relie les pôles positifs d'un panneau aux pôles négatifs d'un autre panneau. Ce type débranchement s'effectue avec des panneaux de même ampérage. En effet si l'on relie deux panneaux d'ampérage différent, l'ensemble s'aligne sur l'ampérage le plus faible .[15]

Imaginons que sur ces 3 panneaux (voir figure I.17), l'un d'eux ait une intensité de 4 Ampères, l'Ampérage total serait de 4 Ampères même si les autres sont à 8 Ampères. Par contre si nous avons [15]:

$$V = 24 + 12 + 10 = 46V \tag{I.1}$$

Et comme la puissance maximum est obtenue en multipliant la tension maximum par le courant maximum, soit

$$P = V \times I \tag{I.2}$$

On peut conclure que l'inconvénient de cette connexion en série est qu'il y a perte de puissance si l'un des panneaux est ombragé (arbre, bâtiment, etc.). Nous montrons un exemple très simple, en prenons toujours c'est 3 panneau solaire en plein soleil avec un ampérage de 8 A et un voltage de 72 V (voir figure I.17), alors la puissance sera calculer comme suit [15]:

$$P = V \times I = 72 \times 8 = 576W \tag{I.3}$$

Maintenant, on suppose que l'un de ces 3 panneaux est ombragé et que l'ampérage descend à 4 A (Tous les panneaux seront à 4 A), alors la puissance sera [15]:

$$P = V \times I = 72 \times 4 = 288W$$
 (I.4)

(Perte de moitié)

Cela nous amène à conclure qu'il faut bien étudier l'emplacement de ses panneaux solaire.

Figure I.17 : Branchement de panneaux en série.

C.2 .Assemblage de panneaux photovoltaïques en parallèle

Le montage des panneaux photovoltaïques en parallèle additionne les intensités tandis que la tension reste identique. Ce type de raccordement influe donc sur l'ampérage et non sur le voltage (C'est le branchement idéal lorsque l'on a besoin d'une plus grosse intensité). Les bornes positives de chaque panneau sont reliées entre elles, de même que les bornes négatives. On choisit ce type de branchement lorsque l'on souhaite une forte intensité. Afin d'éviter les risques de surtension et de court-circuit, on relie entre eux des panneaux de même voltage. On peut par contre utiliser des panneaux d'intensité différente afin d'atteindre l'ampérage désiré [15].

Imaginons que sur ces 3 panneaux (voir figure I.18), l'un d'eux ait une intensité de 5 Ampères, l'Ampérage total serait :

$$I = 5 + 8 + 8 = 21A \tag{I.5}$$

Contrairement à l'assemblage en série, c'est le bon choix lorsqu'il peut y avoir un ombrage sur les panneaux photovoltaïque, reprenons le même exemple précédent (voir l'assemblage en série) mais cette fois ci avec une connexion en parallèle : La puissance de trois panneaux en plein soleil sera [15]:

$$P = V \times I = 72 \times 8 = 576W \tag{I.6}$$

(Exactement comme le montage en série).

Dans le cas ou l'un de ces 3 panneaux est ombragé est l'intensité descend à 4 Ampères. Nous aurons toujours 24 V de tension et (8 A + 8 A + 4 A)d'intensité puisque dans le montage en parallèle les intensités s'additionnent alors que dans le montage en série c'est la plus petite qui prime. La puissance sera donc [15]:

$$P = V \times I = 24 \times 20 = 480W$$
 (I.7)

(Nous avions 288 W dans le montage en série).

Figure I.18 : Branchement de panneaux en parallèle.

C.3 .Assemblage mixte (série / parallèle)

C'est l'assemblage qui s'impose lorsque l'on a besoin d'une certaine puissance à une tension voulue, les règles du montage en série et celles du montage en parallèle s'appliquent dans le cas du montage mixte. [16]

Il convient d'avoir des panneaux de même tension et de même intensité, c'est plus simple pour faire ses calculs et ça évite des problèmes [16].

Un ensemble monté en série s'appelle un string, il est possible d'ajouter des panneaux de mêmes tensions dans les strings pour augmenter la tension, par exemple un panneau de 24 V

si vous avez besoin d'une tension de 96 V. Ou alors d'ajouter un ou plusieurs strings si vous avez besoin de plus d'intensité pour plus de puissance [16].

Si dans cet exemple (voir figure I.19) on ajoute un string nous allons obtenir:

$$P = V \times I = 72(8 + 8 + 8) = 72 \times 24 = 1728W(I.8)$$

Quel que soit le branchement, il faut systématiquement une mise à la terre.

Figure I.19 : Branchement de panneaux mixte.

D. Le module photovoltaïque

Pour produire plus de puissance, les cellules solaires sont assemblées pour former un module figure (I.20). Les connections en série de plusieurs cellules augmentent la tension pour un même courant, tandis que la mise en parallèle accroît le courant en conservant la tension. Ces cellules sont protégées de l'humidité par encapsulation dans un polymère EVA (éthylène-vynil- acétate) figure (I.20) et protégé sur la surface avant d'un verre, trempé à haute transmission et de bonne résistance mécanique, et sur la surface arrière d'une ou de

polyéthylène .[17]

Figure I.20 : Module photovoltaïque.

Actuellement la puissance d'un module est de quelques watts crêtes à quelques dizaines de watts crêtes. Pour obtenir des puissances supérieures, il est nécessaire d'associer en sérieparallèle des modules Figure (I.21) pour avoir un générateur PV. Pour des déséquilibres importants dus à l'occultation d'une ou plusieurs cellules, les modules peuvent être amenés à travailler en récepteur. Pour remédier à ces problèmes, des diodes peuvent être placées en parallèle et en série avec les modules.[14]

Figure I.21 : Schéma synoptique d'un générateur PV.

• Les diodes en série

Pour empêcher la batterie de se décharger la nuit dans les cellules PV ou pour empêcher une série de modules contenant un module défaillant ou masqué de devenir réceptrice du courant fourni par les autres séries, qui ont alors une tension plus élevée qu'elle, une diode est intégrée dans chaque série. On l'appelle aussi diode anti-retour et elle est située en série avec les modules. [14]

• Les diodes en parallèle

Au sein d'une série un module qui ne peut plus produire d'énergie (masque, défaillance), doit être protégé pour ne pas devenir récepteur et s'endommager irrémédiablement ; des diodes sont donc placées en parallèle sur chacun des modules du générateur. Elles permettent de dévier le courant produit par les autres modules de la série et sont placées en parallèle avec les modules.[14]

D.1 .Caractéristique de module PV

a. Tension en circuit ouvert V_{CO}

C'est la tension V_{co} pour laquelle le courant débité par le générateur photovoltaïque est nul.[3]

(C'est la tension maximale d'une photopile ou d'un générateur photovoltaïque).

$$V_{co} = I_{cc} - I_{sat} [\exp\left(\frac{e.V_{pv}}{nkT}\right) - 1] - \frac{V_{pv}}{R_{shu}}$$
(I.9)

Dans le cas idéal, sa valeur est légèrement inférieur à :

$$V_{co} = V_T \ln \left[\frac{I_{pv}}{I_{sat}} + 1 \right]$$
 (I.10)

b. Le courant de court-circuit

A l'inverse du cas précédent, si l'on place une photopile en court-circuit, elle va débiter un Courant maximal à tension nulle. Ce courant est dit courant de court-circuit Icc. De plus, comme nous l'avons vu au paragraphe précédent, le photo-courant fourni par la cellule est proportionnel à l'intensité lumineuse et à la surface du panneau mis en Suivre, Ainsi, plus ces deux paramètres seront élevés, plus l'intensité produite sera grande [18]

c. Point de puissance maximale Pm:

L'utilisation optimale d'une photopile consiste à faire fonctionner une charge sous la tension maximale et à un courant maximal. En effet, suivant la formule P=V.I, pour que P soit maximal : il faut être dans les conditions ou le produit V.I est maximale, c'est le point de charge idéal de la photopile, ou point de puissance maximale Pm.[3]

d. Facteur de forme :

Le facteur de forme est défini comme étant le rapport entre une puissance maximale fournie par la cellule et le produit du courant de court circuit par la tension de circuit ouvert, il est donnée par:

$$FF = \frac{P_{max}}{V_{oc} \times I_{cc}}$$
(I.11)

Ce facteur indique la performance du module, plus il s'approche de l'unité plus le module est Performant. [19]

e. Rendement de la cellule

Le rendement correspond au rapport entre la puissance électrique effectivement délivrée par la cellule photovoltaïque et la quantité d'énergie solaire reçue. Le rendement caractérisant le taux de conversion photons-électrons d'un panneau solaire photovoltaïque, noté, est alors défini selon l'équation suivante [19]:

$$\eta = \frac{P_{max}}{S*G} \tag{I.12}$$

La figure (I.22) et la figure (I.23) représente les caractéristique P=f(V) et I=f(V) d'un module photovoltaïque les représentés le point de puissance maximale.

Figure I.22 : Caractéristique de P=f(V) d'un module photovoltaïque.

Figure I.23 : Caractéristique de I=f(V) d'un module photovoltaïque.

E. Modélisation d'une cellule photovoltaïque

Une cellule PV (figure I.24.) fait intervenir un générateur de courant pour la modélisation du flux lumineux incident, une diode pour les phénomènes de polarisation de la cellule et deux résistances (série et shunt) pour les pertes. Les résistances Rs et Rp permettent de tenir compte des pertes liées aux défauts de fabrication ; Rs représente les diverses résistances de contact et de connexion tandis que Rpcaractérise les courants de fuite dus à la diode et aux effets de bord de la jonction [20]

Figure I.24 : Schéma électrique équivalent d'une cellule PV, modèle à une diode.

La loi des nœuds nous permet d'écrire la relation suivante [20]:

$$I_{ph} = I_p + I_d + I \tag{I.13}$$

A partir de ce circuit, on tire les équations qui nous permettent d'obtenir la caractéristique I-V de la cellule photovoltaïque. [20]

Le courant de jonction I_d est donné par :

$$I_d = Isat(\exp\left(\frac{q.(v+I.R_s)}{n.k.Tc}\right) - 1)$$
(I.14)

Le courant dans la résistance Rp est donné par :

$$I_p = \frac{\nu + l.R_s}{Rp} \tag{I.15}$$

A partir de l'équation (I.14), on obtient l'expression de la caractéristique I-V du modèle choisi [21]

$$I = I_{ph} - I_{sat} \left(exp \frac{q.(v+I.R_s)}{n.k.T_c} \right) - 1) - \frac{v+I.R_p}{R_s}$$
(I.16)

Avec

Isat: Courant de saturation de la diode ou courant à l'obscurité (A).

 η : Coefficient d'idéalité de la cellule photovoltaïque.

K : Constate de Boltzmamm(1,38*10⁻²¹ J/K)

q : Charge d'électro.

Tc : Température absolue de la cellule (K)

La température de la cellule est donnée par l'équation suivante[20]:

$$T_c = T_a + (Noct - T_{aNoct}) \frac{G}{G_{Noct}}$$
(I.17)

Avec

T_a: Température ambiante .

Noct : Température nominale de fonctionnement de cellules .

T_{aNoct} : Température ambiante à Noct.

G :Rayonnement solaire .

G_{Noct} : Rayonnement solaire à Noct .

T_{aNoct} : Température ambiane à Noct

Le photo-courant I_{ph} est donné par [20]:

$$I_{ph} = \frac{G}{G_{ref}} I_{cc_ref} [1 + a_{i_{cc}} (T_c - T_{ref})]$$
(I.18)

Avec :

Avec :

Icc_ref: Courant de court-circuite de référence.

aice : Courant de court-circuit de référence .

Le courant de saturation peut être calculé à partir de l'équation [20]:

$$I_{sat} = \frac{I_{ph}}{(\exp\left(\frac{v_{co}}{n.V_T}\right) - 1)}$$
(I.19)

Avec,

V_{co} : Tension de circuit ouvert (V).

V_T : Le potentiel thermodynamique $v_T = \frac{K.T_c}{q} = 25$ mvà 20°C

La résistance parallèle Rp a une valeur assez élevée. Alors le courant généré par la cellule peut être donné sous la forme [20]:

$$I = I_{ph} \left[1 - \frac{(\exp\left(\frac{V+f,R_s}{n,V_T}\right) - 1)}{(\exp\left(\frac{V_{co}}{n,V_T}\right) - 1)} \right]$$
(I.20)

E.1 .Paramètres d'une cellule PV

a. Le courant de court-circuit

Le courant de court-circuit $I_{cc} \approx I_{ph}$ c'est la plus grande valeur du courant générée par la cellule sous les conditions du court-circuit où V=0 [22].

La variation du courant de court-circuit en fonction de l'éclairement et de la température de jonction et par rapport aux conditions standards est la suivante[23]:

$$I_{cc} = \frac{G}{G_{ref}} I_{cc_ref} [1 + a_{i_{cc}} (T_C - T_{ref})]$$
(I.21)

b. La tension de circuit ouvert

La tension de circuit ouvert est la tension à traverse la jonction/diode PN où I = 0

Elle représente la tension de cellule lorsqu'elle est à l'ombre. Elle est donnée par[20]:

$$V = V_{co} = n. V_T. \ln\left(\frac{I_{ph}}{G_{ref}}\right)$$
(I.22)

La variation de la tension de circuit ouvert en fonction de l'éclairement et de la température de jonction et par rapport aux conditions standards est la suivante[22] :

$$V_{CO} = V_{CO_ref} + a_{vco} (T_c - T_{ref}) + n. V_T. \ln \left(\frac{G}{G_{ref}}\right)$$
(I.23)

avco :Coefficient de température de tension de circuit ouvert .

c. Association de Cellules Photovoltaïques

Dans un groupement en série, les cellules sont traversées par le même courant et la caractéristique résultante du groupement en série est obtenue par l'addition des tensions à courant donné. [20]

La (figure I.25) montre la caractéristique résultante courant-tension (I_{scc} , V_{sco}) obtenue en associant en série *ns* cellules identiques dont la caractéristique courant-tension est (I_{cc} , V_{co}).[20]

Figure I.25: Caractéristiques de cellules photovoltaïques en série.

Les propriétés du groupement en parallèle des cellules sont duales de celles du groupement en série. Ainsi, dans un groupement de cellules connectées en parallèle, les cellules sont soumises à la même tension et la caractéristique résultante du groupement est obtenue par addition des courants à tension donnée .[20]

La (figure I.26) montre la caractéristique résultante (I_{pcc} , V_{Pco}) obtenue en associant en parallèle np cellules identiques (I_{cc} , V_{co}).[20]

Figure I.26 : Caractéristiques de cellules photovoltaïques en parallèle.

F. Modélisation du générateur PV

Un générateur photovoltaïque ou module est constitué d'un ensemble de cellules photovoltaïques élémentaires montées en série et/ou parallèle. Un groupe de panneaux PV de ns cellules montées en série et np cellules en parallèle est modélisé par le schéma de la (figure I.27)[24]

Figure I.27 : Schéma électrique équivalent d'un générateur PV, modèle à une diode.

$$I_{ph} = n_p. \, i_{pH}. \, I_G = n_p. \, i_{pph} \tag{I.24}$$

$$I_d = n_p. i_d. I_{rsh} = n_p. i_{rsh}$$
(I.25)

$$V_d = n_s \cdot V_d \cdot V_G = n_s \cdot V_P$$
 (1.26)

$$R_{s} = \frac{n_{s}}{n_{p}} \cdot r_{s} \cdot R_{sh} = \frac{n_{s}}{n_{p}} \cdot r_{sh}$$
(I.27)

G. Caractéristique I-V d'un générateur photovoltaïque

L'association de plusieurs cellules photovoltaïques en série et en série parallèle donne ce qu'on appelle générateur photovoltaïque dont la caractéristique générale est représentée sur la figure (figure I.28)[20]

Figure I.28 : Caractéristique courant- tension d'un générateur photovoltaïque.

V_{co} : Tension de circuit ouvert.

Icc : Courant de court-circuit.

V_m,I_m:Tension et courant au point de puissance maximale P_m.

H. Caractéristique P-V d'un générateur photovoltaïque

La puissance générée par une cellule photovoltaïque est donnée par [20]:

$$P = V.I \tag{I.28}$$

La puissance maximale est obtenue lorsque [20]:

Figure I.29 : Caractéristique puissance- tension d'un générateur photovoltaïque.

I.7. Etage d'adaptation

L'alimentation de la charge par panneaux photovoltaïques peut se faire par couplage direct, mais cela impliquerait un fonctionnement au fil du soleil, à puissance essentiellement variable au cours de la journée. Ce couplage implique donc l'acceptation d'une adaptation forcément non parfaite sur toute la plage de fonctionnement[25].

Il devient nécessaire d'utiliser un étage d'adaptation afin d'adapter la puissance aux nécessités de l'installation, cet étage peut comprendre des convertisseurs (DC-DC, DC-AC) et/ou un système de stockage[25].

Ces convertisseurs statiques servent à transformer la tension continue fournie par les panneaux ou les batteries pour l'adapter à des récepteurs fonctionnant en une tension continue différente, il est utilisé dans la plupart des nouveaux types de sources de production d'énergie électrique (éolienne, photovoltaïque, pile à combustible...), son étude est très importante pour bien fonctionner et commander le système[25].

A. Convertisseur DC/DC (hacheur)

Les convertisseurs statiques servent à transformer la tension continue fournie par les panneaux ou les batteries pour l'adapter à des récepteurs fonctionnant en une tension continue différente, il est utilisé dans la plupart des nouveaux types de sources de production d'énergie électrique (éolienne, photovoltaïque, pile à combustible...), son étude est très importante pour bien fonctionner et commander le système[25].

A.1 .Type des convertisseurs DC/DC

Il y a plusieurs topologies des convertisseurs DC/DC. Ils sont classés en deux types : les convertisseurs non isolés et les convertisseurs isolés de la source[25].

• Pour les convertisseurs non isolés c'est les convertisseurs qui ne comportent pas de transformateurs d'isolement. Ces topologies sont encore classées en trois catégories :

- Abaisseurs (Buck)
- Élévateurs (Boost)
- Abaisseurs Élévateurs (Buck-Boost).

La topologie Buck est employée pour les faibles tensions dans les applications photovoltaïques, le convertisseur Buck est habituellement utilisé comme chargeur de batteries et dans des systèmes de pompage de l'eau.[25]

La topologie Boost est utilisée généralement pour augmenter la tension avant d'attaquer l'étage de l'onduleur. Puis, il y a des topologies capables d'augmenter et de diminuer la tension telles que le Buck-Boost, le Cuk, et le Sepic[25].

Les trois convertisseurs DC/DC sont représentés sur la figure I.30

Figure I.30 : Schéma des convertisseurs DC-DC couramment utilisés : (a) : Boost (b) : Buck (c) : Buck-Boost.

• Pour les convertisseurs isolés c'est les convertisseurs qui comportent un transformateur d'isolement fonctionnant à haute fréquence, elles sont souvent utilisées dans les alimentations à découpage. La topologie la plus connue dans la majorité des applications est le Fly back. Dans les applications photovoltaïques, les systèmes de couplage avec le réseau électrique utilisent souvent ces types de topologies quand l'isolement électrique est préféré pour des raisons de sûreté[25].

A.2 .Modélisation des convertisseurs de puissance

a. Convertisseur DC-DC Buck

Ce type de convertisseurs est utilisé pour abaisser la tension de la source d'un niveau élevé à une valeur basse. Le schéma de la puissance d'un convertisseur Buck est illustré sur la(Figure I.31)[20].

Figure I.31 : Montage d'un convertisseur buck.

Il consiste d'un interrupteur de puissance (S), une diode (D) et un filtre passe bas sous forme d'une inductance (L) connectée en parallèle avec un condensateur (C). Lorsque l'interrupteur S est fermé, la source alimente la charge et le condensateur au même temps. Mais, quand S est ouvert, le condensateur, dans ce cas, alimente la charge[20].

Chapitre1

• Cas de S fermé (où S=1)

Les équations de courant et tension peuvent être écrits comme suit [20]:

$$\frac{dV_{DC}}{dt} = \frac{1}{C} [l_l - \frac{V_{DC}}{R}]$$
(I.30)

$$\frac{dI_p}{dt} = \frac{1}{L} \left[V_s - V_{DC} \right] \tag{I.31}$$

• Cas de S ouvert (où S=0)

Les équations deviennent comme suit [20]:

$$\frac{dV_{DC}}{dt} = \frac{1}{C} \left[l_l - \frac{V_{DC}}{R} \right]$$
(I.32)

$$\frac{dI_l}{dt} = \frac{1}{L} [0 - V_{DC}]$$
(I.33)

Si nous incluons le facteur u (i.e., l'état d'interrupteur) dans le système, les équations générales qui régissent le convertisseur sont deviennent :

$$\frac{dV_{DC}}{dt} = \frac{1}{C} \left[l_l - \frac{V_{DC}}{R} \right]$$
(I.34)

$$\frac{dI_L}{dt} = \frac{1}{L} [u. V_S - V_{DC}]$$
(I.35)

Où, u est un facteur indemnitaire qui définit l'état de l'interrupteur fermé (u=1) ou ouvert (u=0).

b. Convertisseur DC-DC boost

Dans le cas où la tension de la source est inférieure à celle de la demande, le convertisseur boost est appliqué pour élever le niveau de tension de sortie à une valeur désirée. La (figure I.32) représente le schéma du principe de d'un convertisseur boost.

Il contient les mêmes éléments (i.e., Switch, diode, L et C), mais la configuration est différente[20].

Figure I.32 : Montage d'un convertisseur boost.

• Cas de S fermé (où S=1)

Lors, S est fermé, le convertisseur boost peut être représenté par les équations suivantes [20]:

$$\frac{dV_{DC}}{dt} = \frac{1}{C} \left[0 - \frac{V_{DC}}{R} \right]$$
(I.36)

$$\frac{dI_l}{dt} = \frac{1}{L} [V_S - 0]$$
(I.37)

• Cas de S ouvert (où S=0)

De la même manière, quand S est ouvert, les équations deviennent [20]:

$$\frac{dV_{DC}}{dt} = \frac{1}{c} \left[L_L - \frac{V_{DC}}{R} \right]$$
(I.38)

$$\frac{dV_{DC}}{dt} = \frac{1}{L} [V_S - V_{DC}]$$
(I.39)

Quand u est inclus, le comportement du convertisseur « Boost » est décrit par le système d'équations suivant [20]:

$$\frac{dV_{DC}}{dt} = \frac{1}{C} \left[(1-u) \cdot I_L - \frac{V_{DC}}{R} \right]$$
(I.40)

$$\frac{dI_l}{dt} = \frac{1}{L} [V_s - (1 - u). V_{DC}]$$
(I.41)

De plus, il est important de noter que les valeurs de L et C des convertisseurs Boost/Buck doivent être proprement dimensionnés par le concepteur. Ainsi, le tableau (I.1) résume les principales formules adoptées pour dimensionner la valeur de L et C[20].

	Buck	Boost
L	$L \ge V_{DC} \times (1 - d) / (f \times \Delta I_R)$	$L \ge V_S \times d/f \times \Delta I_R$
С	$C \ge V_{DC} \times (1-d)(8 \times L \times f^2 \times \Delta V_{DC})$	$C \ge V_{DC} \times d/(R \times L \times f \times \Delta V_{DC})$

Tableau I.1 : Formules de dimensionnement des valeurs de L et C des convertisseurs DC-DC.

Avec :

V : Tension de sortie du convertisseur (V).

f : Fréquence de le hachage (Hz).

IR : Le courant nominal de la charge (A).

 ΔI : Ondulation du courant (A), dans notre cas ($\Delta IR(\%)=5\% IR$.

 ΔV : Ondulation de tension aux bornes de la charge ($\Delta VDC(\%)=5\%VDC$).

D :Rapport cyclique de convertisseur limité entre 0et 1[26].

B. Convertisseur DC/AC (onduleur)

Les onduleurs sont des convertisseurs statiques qui servent principalement à alimenter, à fréquence fixe ou variable, des charges alternatives. Le but recherché est l'obtention pour chaque tension d'entrée, une tension de sortie d'une forme d'onde approximant au mieux la sinusoïde[25].

B.1 .Les types d'onduleurs

On distingue deux principaux types d'onduleurs selon la nature de la source d'alimentation :

• Les onduleurs de courant : Alimentés par une source de courant, peu affectés par les variations de tension.

• Les onduleurs de tension : Alimentés par une source de tension continue peu affectée par les variations de courant. Composés de bras à interrupteurs réversibles en courant, commandés à la fermeture et à l'ouverture.

Chaque interrupteur comporte un transistor (GTO ou IGBT) et une diode en antiparallèle.

Les onduleurs de tension peuvent être à plusieurs niveaux selon les besoins d'utilisation. Ils peuvent aussi être classés en :

• Onduleurs de tension monophasés : Utilisés généralement pour l'alimentation de charges monophasées de faible puissance, ils peuvent être en pont ou en demi-point.

• Onduleurs de tension triphasés : Offrant une source de tension triphasée avec une amplitude, phase et fréquence contrôlables et une forme approchant la sinusoïde. Ces onduleurs sont employés dans la moyenne et forte puissance[25].

B.2 . Principe de fonctionnement d'un onduleur

Un onduleur est un dispositif électronique assurant la conversion statique d'une tension/courant continu en tension /courant alternatif. Il est dit autonome s'il assure de lui même sa fréquence et sa forme d'onde .Deux types d'onduleurs sont donc utilisés pour a, en parallèle, de trois onduleurs monophasés en demi pont (ou en pont) donnant trois tensions de sortie déphasées de 120° degrés, l'une par rapport à l'autre[3].

Figure I.33 : Schéma de Principe d'un Onduleur Triphasé En Pont.

La figure (I.33) illustre la topologie d'un onduleur triphasé à six interrupteurs de puissance. Le décalage entre les signaux de commande est de 60°[27].

B.3 .La commande d'onduleur

L'objectif de la commande est de générer les ordres de l'ouverture et de fermeture des interrupteurs de sorte que la tension créée par l'onduleur soit la plus proche de la tension de référence. Parmi les techniques les plus utilisées pour la commande de l'onduleur est la technique MLI (Modulation par largeur d'impulsion)[25].

Le but de l'onduleur commandé par largeur d'impulsion est de contrôler la tension de sortie en amplitude et fréquence à partir d'une tension du bus continu constante. La commande par largeur d'impulsion consiste à comparer une onde sinusoïdale de référence avec une onde triangulaire ; la porteuse, de fréquence et d'amplitude constantes. La fréquence de l'onde triangulaire détermine la fréquence de commutation de 1' onduleur. Dépendamment du résultat de la comparaison, les signaux de commande des gâchettes des interrupteurs sont générés. Ainsi un interrupteur d'un bras donné est commandé pendant que 1' autre interrupteur mondé sur le même bras est ouvert[25].

B.4 .Modélisation de l'onduleur

L'onduleur de tension triphasée est constitué de trois bras bidirectionnels en courant dont chacun est constitué de deux interrupteurs en série. Chaque interrupteur est constitué d'un transistor et d'une diode assemblés en antiparallèle (voir la figure (I.34)). Les deux interrupteurs qui sont sur la même cellule sont commandés d'une façon complémentaire[28]

Figure I.34 : Onduleur de tension triphasé.

Pour des besoins de modélisation ,nous présentons le schéma de la figure(1.35)où les semi-conducteurs sont remplacés par des interrupteurs mécaniques.

Figure I.35 : Schéma électrique équivalent de l'onduleur de tension.

• Fonction de connexion des interrupteurs

Chaque interrupteur K_i (avec i=1,2,.....6) idéal introduit une fonction de connexion F_{kl} qui vaut[20]:

$$F_{kl} = 1 \operatorname{Si} K_{kl}$$
estfermé.

 $F_{kl} = 0$ Si K_{kl} estouvert

Avec: $K = 1,2,3 \ et \ l = 1,2$

• Fonction de conversion des interrupteurs:

Les deux interrupteurs d'un même brasseront commandes d'une manière complémentaire.

Quand l'un est conducteur, l'autre est impérativement bloque[20]

$$\begin{cases}
V_{ab} = F_{11} \cdot U_c \\
V_{b0} = F_{12} \cdot U_c \\
V_{c0} = F_{31} \cdot U_c
\end{cases}$$
(I.42)

 $U_c:$ la tension d'alimentation de l'onduleur par rapporta neutre $\ .$

$$\begin{cases} U_{ab} = V_{a0} - V_{c0} = (F_{11} - F_{21}) \cdot U_c \\ U_{bc} = V_{b0} - V_{c0} = (F_{21} - F_{31}) \cdot U_c \\ U_{ac} = V_{c0} - V_{c0} = (F_{31} - F_{11}) \cdot U_c \end{cases}$$
(I.43)

Écrivant l'expression (I.44)Sousa forme matricielle:

$$\begin{pmatrix} U_{ab} \\ U_{bc} \\ U_{ca} \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} F_{11} \\ F_{21} \\ F_{31} \end{pmatrix} U_c$$
 (I.44)

Il reste à déterminer les fonctions logiques F_{kl} , celles-ci dépendent de la stratégie de modulation de largeur d'impulsion appliquée à l'onduleur[20].

I.8.Système de stockage

A. Les batteries

Les batteries sont des ensembles de cellules électrochimiques (qui convertissent l'énergie chimique en énergie électrique) connectées en série, ces cellules électrochimiques ne sont pas des cellules photovoltaïques, dont le principe de fonctionnement est complètement différent[29].

Les cellules de batteries se composent de deux électrodes(ou plaques) émergées dans une solution d électrolyte. Lorsqu'un circuit se crée entre les électrodes, un courant circule, provoqué par les réactions chimiques réversibles entre les électrodes et l'électrolyte dans la cellule. Certaines cellules ne peuvent pas être rechargées .ce sont des batteries sèches ou primaires, D'autres Se rechargent indéfiniment, ce sont les batteries secondaires ou batteries d'accumulateurs. Lors de la charge, l'énergie électrique fournie par le générateur électrique est stockée dans les cellules sous forme d'énergie chimique .lors de la décharge l'énergie chimique emmagasinée est retirée de la batterie et convertie en énergie électrique. Les types de batteries d'accumulateurs rechargeables et plus répandus au monde sont les batteries au plomb (plomb-acide), lithium-ion, nickel-hydrure métallique et au nickel cadmium, l'équationI.26 si dessous représente la charge et de la décharge de la batterie[29].

$$P_b + P_b O_2 + 2H_2 SO_4 \leftrightarrow 2P_b SO_4 + 2H_2 O$$
 (I.45)

Tel que :

Électrode positive : oxyde de plomb (P_b O₂). Electrode positive : oxyde de plomb (P_bO₂). Electrode négative : plomb (P_b). Electrolyte : mélange d'eau + acide sulfurique (H₂SO₄+H₂O).

B. Les types de batteries

B.1 .Batteries au plomb

Les batteries au plomb sont la réponse la plus simple au problème de stockage de la charge PV. Les sections qui suivent leur sont donc exclusivement consacrées. Les divers types de batteries au plomb se répartissent en deux grandes catégories :les batteries à décharge profonde ,d'une part et les batteries à décharge peu profonde d'autre part. On privilégie généralement les batteries à décharge profonde dans les centrales solaires parce que le fait de prélever l'essentiel de l'énergie stockée ne les endommage pas et n'affecte pas leur longévité. Les batteries à décharge peu profonde ou de (de démarrage) destinées à l'automobile, sont

conçues pour fournir une puissance importante pendant une durée brève on y prélève une quantité d'énergie trop importante avant de les recharger les plaques risquent d'être détériorées. Utilisées dans les installations photovoltaïques, les batteries à décharge peu profonde doivent être gérées avec le plus grand soin et ne jamais subir une décharge profonde[29].

B.2 .Batteries nickel-hydrure métallique, cadmium-nickel et lithium-ion

Ce type de batteries sont semblables les unes aux autres et différent aux batteries du plomb courantes en ce sens qu'elles sont scellées, portables, ne demandent aucun entretien et servent à alimenter les petits appareils (on les appelle aussi batteries de poche).Elles fonctionnent par réaction chimique entre une électrode positive et une électrode négative baignant dans un électrolyte .Chaque élément nicad (nickel-cadmium) ou à hydrure métallique a une tension d'environ 1.3V (de3.3 au 4.0Vpar élément pour les batteries lithium-ion).

En règle générale, le cout de ces trois types de batteries par unité de stockage est plus élevé que celui des batteries au plomb .Pas étonnant, donc, que la plupart des concepteurs de systèmes PV choisissent les batteries au plomb .Cependant ces trois types de batteries présentent aussi des avantages que les concepteurs de systèmes PV de faible puissance ne doivent pas ignorer.

Les batteries au nickel-cadmium et aux hydrures métalliques acceptent une décharge complète sans risque de dommage pour les éléments et peuvent rester plus longtemps faiblement chargées aussi fonctionnent sur des plages de températures plus larges que les batteries au plomb, leur durée de vie dépasse celle de la plupart des types de batteries au plomb[29].

C. Charge et décharge

Le courant de charge est le courant électrique fourni à la batterie et stocké par elle.

Comme un réservoir, qui se remplit plus ou moins vite selon le débit du tuyau qui l'alimente, une batterie se charge plus ou moins vite selon le débit du courant qui la charge. Il va de soi qu'une part de l'énergie est dissipée sous forme de chaleur au cours du processus de charge et de décharge .Selon le type et l'âge de la batterie, les pertes d'énergie se situent entre 10et 30 % pour les batteries au plomb et elles sont bien plus importantes encore avec de très vieilles batteries. Les courants faibles (3 à 5%de la capacité de la batterie) sont mieux adaptés

à la charge des batteries. Le courant de charge de la batterie ne doit pas dépasser 10% de sa capacité nominale. Ainsi, le courant de charge d'une batterie de 70 Ah ne devrait jamais dépasser 7A. Lorsque le courant de charge est fort, électrolyte se transforme rapidement en gaz et les cellules risquent d'être détériorées.

Lorsqu'une charge connectée consomme de l'énergie stockée dans la batterie, celle-ci se décharge. L'intensité du courant de décharge correspond au débit de la batterie .On obtient la quantité d'énergie consommée sur une durée donnée en multipliant l'intensité du courant de décharge par la durée de fonctionnement de la charge[29].

D. Le rôle de la batterie dans les systèmes isolés

L'utilisation de la batterie pour un système photovoltaïque est indispensable pour les raisons suivantes :

• Stocker l'énergie produite et la délivrer dans la nuit et quand l'ensoleillement ne sera pas suffisant pour alimenter les charges.

• Le réglage de la tension de bus continue et le maintien constant autour d'une valeur désirée [25].

E. Le principe de fonctionnement des batteries

Le principe de fonctionnement d'un générateur électrochimique est essentiellement basé sur la conversion de l'énergie chimique en énergie électrique. Toute réaction chimique d'oxydoréduction, pourvu qu'elle soit spontanée, c'est-à-dire accompagnée d'une diminution d'énergie libre, est en effet susceptible de donner naissance à un courant électrique lorsqu'elle a lieu dans des conditions appropriées. Pour cela, il faut que l'échange des électrons de valence s'effectue par le canal d'un circuit extérieur au système.[20]

Ainsi la combustion libre de l'hydrogène produisant de l'eau et de l'énergie calorifique ne peut donner naissance à un courant électrique car l'échange électronique s'accomplit directement, en quelque sorte par un court-circuitage moléculaire.[20]

F. Caractéristiques générales des batteries

Les accumulateurs destinés aux installations photovoltaïques doivent avoir les qualités suivantes :

- être robustes.
- avoir un bon rendement de charge et de décharge.

- avoir une faible résistance interne.
- avoir un taux d'autodécharge faible.
- Maintenance réduite.
- posséder une grande réserve d'électrolyte.
- avoir une durée de vie importante.

• être aptes aux Cyclades (on entend par cycle, la décharge de la batterie, quelque soit la profondeur de décharge, suivie d'une recharge)[20].

G. Modélisation du dispositif de stockage

Il existe plusieurs modèles de batterie au plomb et leur mise en œuvre n'est pas aisée du fait de la prise en compte de plusieurs paramètres. Suivant les applications et les contraintes auxquelles elles sont soumises, les batteries réagissent différemment, et donc on ne trouve pas de modèle unique qui soit exact dans toutes les circonstances. Notre choix s'est porté sur deux modèles : le modèle dit « CIEMAT» relativement complet, malgré quelques imperfections comme le saut de tension lorsqu'on passe d'un cycle de charge à un cycle de décharge, et le modèle R-C [28]

Le modèle R-C : le modèle électrique simple de la batterie comprend une fem E_0 modélisant la tension à vide de la batterie, un condensateur modélisant la capacité interne de la batterie (C_b) et une résistance interne (R_s) [24]

Figure I.36 : Modèle R-C de la batterie.

Nous avons donc :

$$V_{att} = E_0 - R_s. (i - V_{cb})$$
(I.46)

On définit également l'état de charge (E_{DC}) de la batterie par :

$$E_{DC} = 1 - \frac{Q_d}{C_b} \tag{I.47}$$

Avec

C_b : La capacité (Ah) nominale de la batterie.

1

Qd :La quantité de charge manquante par rapport à Cb

• Le modèle \ll CIEMAT \gg

Ce modèle est basé sur le schéma suivant (Figure I.37) où la batterie est décrite par seulement deux éléments, une source de tension et une résistance interne, dont les valeurs dépendent d'un certain nombre de paramètres[20]:

Figure I.37 : Schéma équivalent de *nb* éléments en série.

Ce modèle définit la tension aux bornes de l'accumulateur en fonction du courant imposé, de son état de charge et de la température. Il tient compte du rendement faradique en charge pour calculer l'évolution de son état de charge et intègre la phase de dégazage (dégagement d'hydrogène)[28]

Figure I.38 : Modèle CIEMAT de la batterie au plomb sous Simulink.

Les entrées du modèle de la (figure. I.38)sont donc la puissance et l'écart de température par rapport à la température nominale fixée à 25°C. Le calcul de l'état de charge se fait en interne et permet de calculer la tension. La valeur du courant est obtenue à partir de la puissance et de la tension (équation I.49). L'horloge représentée sur la (figure I.26) a juste un rôle dans l'acquisition des données.

$$I_{bat} = \frac{P_{bat}}{V_{bat}} \tag{I.48}$$

Les expressions des grandeurs de la batterie sont exprimées ci-dessous.

L'expression générale de la tension batterie :

$$V_{bat} = n_b. E_b + n_b. R_i. I_{bat}$$
(I.49)

La valeur de la résistance interne de la batterie est calculée en fonction de sa tension nominale.

Les tensions en décharge et en charge sont modélisées par deux équations différentes[24]:

• Tension en décharge :

$$V_{bat_{d\dot{e}}} = n_b [1,965 + 0,12.EDC] - n_b \frac{|I_{bat}|}{C_{10}} \left(\frac{4}{1 + |I_{bat}|^{1,3}} + \frac{0,27}{(EDC^{1,5})} + 0,02 \right) \cdot (1 - 0,007.\Delta T)$$
(I.50)

• Tension en charge :

$$V_{bat_{-ch}} = n_b \cdot \left[2 + 0, 16. EDC\right] + n_b \frac{|I_{bat}|}{C_{10}} \cdot \left(\frac{6}{1 + |I_{bat}|^{0.86}} + \frac{0,48}{(EDC^{1,2})} + 0,036\right) \cdot (1 - 0,025. \Delta T)$$
(I.51)

I.9 .Système de régulation

A. Définition d'un régulateur

Comme son nom l'indique, le régulateur de charge et un dispositif qui contrôle et régule l'état de charge et de décharge de la batterie. Il protège l'installation photovoltaïque, et notamment la batterie qui est l'élément le plus sensible et fragile de l'installation. Connecté au cœur du système, il est branché à la fois sur les modules solaires, la batterie et les appareils qui consomment l'électricité (la charge), si la batterie était à pleine charge et que les modules continuaient de lui fournir de l'énergie, il y aurait alors surcharge et la batterie se détériorerait.

De même, il est recommandé de ne pas vider entièrement une batterie. Ainsi, même s'il s'agit d'une batterie à décharge profonde, il vaut mieux ne pas descendre en dessous de 50% à 80% de décharge pour ne pas trop la dégrader. Le régulateur augmente donc sa durée de vie en lui évitant des états extrêmes.[30]

Les régulateurs de charge assurent principalement les taches suivantes :

• Protection d'accumulateur contre les décharges profondes ; Limitation de la tension de charge terminale (protection contre les surcharges) ; Prévention de la décharge des batteries pendant la nuit dans les résistances internes du générateur photovoltaïque.

• Adaptation du comportement de la charge au type d'accumulateur, (particulièrement important pour les accumulateurs gel).

- Protection contre les inversions de pôles.
- Protection contre les surcharges et le court-circuit.
- Affichage de la fonction de charge instantanée ainsi que du courant et de tension.[31]

La figure suivante nous donne les différents paramètres du régulateur de charge:

Figure I.39 : Paramètres de régulateur de charge.

B. Types des régulateurs de charge

Le fait que les panneaux solaires ont la particularité d'être court-circuités ou peuvent voir leur circuit s'ouvrir sans les endommager, à donner naissance à deux principale méthodes de contrôle de la charge des batteries : le régulateur série et le régulateur shunt[30].

B.1 .Régulateur shunt

La figure (I.40) montre une structure shunt d'un régulateur solaire, le régulateur shunt contrôle la charge de la batterie en court-circuitant le module photovoltaïque sans aucun risque.

Tous les régulateurs shunt exigent la présence d'une diode anti-retour en série entre la batterie et l'élément shunt afin d'empêcher le court-circuit de la batterie[30].

Figure I.40 : Conception d'un régulateur shunt.

Typiquement le régulateur shunt peut fonctionner selon deux techniques de contrôle: • La première technique est une simple interruption «on/off» « shunt interruption design», quand la tension V_{bat} atteint la tension de régulation V_R , le régulateur déconnecte complètement la batterie du panneau photovoltaïque, puis il la reconnecte si sa tension diminue à la valeur V_{ARV} (array reconnecta voltage). Cette opération continue de cette manière jusqu'à ce que la batterie s'approche de la pleine charge.

• La deuxième méthode« *shunt liner design*»; si la tension V_{bat} atteint la valeur VR, l'élément shunt interrompe le courant de charge d'une manière linéaire, afin de maintenir la tension V_{bat} à une tension fixe[30].

Figure I.41 : Schéma fonctionnel du régulateur shunt.

B.2 .Régulateur type série

Comme son nom l'indique, ce type fonctionne en série entre le générateur photovoltaïque et la batterie. La figure (I.42) montre une structure électrique typique d'un contrôleur série.[30]

Figure I.42 : Conception d'un régulateur série.

Le régulateur de type série peut fonctionner selon plusieurs méthodes soit: **a.** Par une interruption série *«Series- Interrupting-Design»* où le régulateur déconnecte complètement la batterie du panneau photovoltaïque si sa tension atteint la tension de régulateur *VR*, puis il la reconnecte si sa tension diminue à la valeur *VARV*[30]. **b.** Par limitation linéaire du courant de charge *«Series-Linear -Design»* afin de maintenir la tension de la batterie à la valeur *VR*[30] **C.** Par une technique PWM «*series -Interrupting, PWM Design*». Cette technique est caractérisé par la présence d'un élément de puissance entre le panneau photovoltaïque et la batterie, cet élément de puissance s'ouvre et se referme par un signal de commande «*PWM*» d'une fréquence constante et d'un rapport cyclique variable. Cette technique de commande hache le courant généré par le panneau photovoltaïque en impulsions afin de réguler la quantité de la charge dans la batterie. Si la tension de la batterie augmente, la largeur d'impulsion diminue, et le courant de charge diminue également[17].

B.3 .Le régulateur (MLI)

Le régulateur MLI envoie à la batterie des impulsions variables selon l'état de charge. Lorsque l'état de charge est faible, l'impulsion est large (la charge élevée) ou la charge est continue. Lorsque l'état de charge est élevé, le régulateur envoie des impulsions de charge de plus en plus étroites. Lorsque l'état de charge est maximale (mode charge d'entretien) labatterie reçoit de temps en temps une impulsion étroite. Le régulateur mesure l'état de chargeet juste l'impulsion en conséquence. (Les régulateur PVM et MPPT utilisent des fonctions des régulateurs série ou shunt) [31]

B.4 .Le régulateur MPPT

Le régulateur MPPT utilise une électronique de conversion cc/cc pour suivre le point de puissance maximale de la courbe caractéristique I/V du module ou du panneau solaire photovoltaïque. La tension au point de puissance maximale d'un module est souvent bien plus élevée que la tension de charge de la batterie. Ceci signifie qu'un module de 100 Wc peut charger une batterie à 75Wc à 14V –le point de puissance maximale pouvant être 16V. En maintenant la tension de charge au point de puissance maximale les régulateurs MPPT accroissent de 10 à 35% la quantité d'énergie fournie par le panneau solaire. Etant donné qu'ils peuvent également accepter des tensions plus élevée et convertir le courant en 12V (la tension nominale de la batterie). On les trouve plutôt dans les installations de forte puissance, ou optimisation de la production des panneaux solaires permet des réductions de couts significatives [31]

C. Comparaison de différentes technologies de régulateurs

Les avantages et les désavantages des différentes technologies de régulateurs sont donnés dans le tableau suivant[32]

Type de	Méthode de	Avantage	Désavantage
régulateur	charge		
Shunt- interrupteu	On/Off	-Faible résistance de	-Fin de charge difficile à atteindre
r		passage entre panneau et batterie.	-Diode de blocage importante
		-Simple fiable si	-Tension de passage plus élevée
		bien dimensionné	-Tension plus élevée sur
			l'interrupteur en cas de surtension.
Shunt- linéaire	Tension constant	-Fin de charge	-Dissipation thermique importante
		optimale	-Diode de blocage importante
		-Faible résistance de	-Tension de hot spot plus élevée
		passage entre	
		panneau et batterie	
Série- interrupteu	On/Off	-Simple et fiable	Fin de charge difficile à atteindre
r		-Faible résistance de	
		passage entre	
		panneau et batterie	
Série-	Tension	-Fin de charge	-Dissipation thermique importante
lineane	constant	optimale	-Tension de passage plus élevée
		-Surtension sur	
		l'interrupteur réduite	
Série- PWM	Tension	-Fin de charge	-Tension de passage plus élevée
1 10 101	Constant	optimale	-Electronique plus complexe

		-Dissipation	-Génère des parasites sur les
		thermique réduite	équipements sensibles proches.
MPPT	Tension constant	-Rendement plus	-Coût
		élevé à haute température	-Génère des parasites sur les
			équipements sensibles proches

Tableau I.2 : Comparaison de performances de différents types de régulateurs.

I.10 .Méthodes de pompages

Pour pomper l'eau avec un système photovoltaïque, deux techniques sont possibles :

A. Pompage direct « au fil du soleil »

Le système de pompage d'eau photovoltaïque directe est représenté par la Figure 3.1 Dans ce système, l'électricité produite par les modules PV est directement fournie à la pompe. Cette dernière utilise cette énergie électrique pour pomper l'eau. Le système pompe l'eau uniquement pendant la journée (lorsque l'énergie solaire est disponible). L'intensité du rayonnement solaire incident sur le panneau solaire la quantité d'eau pompée au cours de cette période. L'avantage de ce système est qu'il est simple et peu coûteux par rapport à un SPEPV avec batterie [33]. (Voir la figure (I.43)).

Figure I.43 : Système de pompage d'eau solaire PV à couplage direct.

B. Pompage avec stockage d'énergie

Un SPEPV avec une batterie de stockage Figure (I.44) est constitué générateur photovoltaïque, d'un régulateur de charge, des batteries, d'un contrôleur de pompe, d'un réservoir de stockage et d'une pompe à eau. Pendant la journée, les panneaux solaires convertissent l'énergie solaire en courant électrique qui charge directement les batteries. Ces dernières alimentent la pompe pour un pompage d'eau selon les besoins et peuvent prolonger la durée de pompage de l'eau en fonction de leur charge. L'utilisation des batteries dans un

SPEPV assure le pompage de l'eau, même pendant les périodes de faible luminosité, de temps nuageux et pendant la nuit aussi.

Cependant, leur utilisation augmente le coût, la complexité et peut réduire l'efficacité globale du système [33]

Figure I.44 : Système de pompage d'eau solaire PV avec stockage.

I.11 .Moteur électrique

Le courant généré par le panneau solaire photovoltaïque est continu. Il peut être transformé en courant alternatif par un onduleur. Par conséquent, les SPEPV sont classés selon le moteur d'entrainement en deux types : moteur à courant continu ou alternatif [34].

A. Moteur à courant continu

Dans ce type de SPEPV, la pompe est entraînée par un moteur à courant continu qui peut être : moteur à courant continu classique avec des balais et moteur à courant continu sans balais.

Les moteurs à courant continu conventionnels utilisent des balais en charbons pour transférer l'énergie électrique à partir de champ PV à l'arbre du moteur. Ces balais s'usent doivent être changés fréquemment. Ceci augmente le coût d'exploitation et d'entretien du moteur. Les machines utilisent le principe d'induction magnétique pour transférer la puissance PV à l'arbre du moteur. Le système de pompage d'eau utilisant le courant continu peut aussi être classé dans la configuration de couplage direct ou celle avec batterie[34]

Figure I.45 : Diagramme du pompage PV par pompe à DC.

B. Moteur à courant alternatif

Un système de pompage de l'eau à courant alternatif (AC) se compose d'un moteur à courant alternatif (asynchrone ou synchrone) entraînant une pompe, comme indiqué sur la Figure (I.46). Comme le panneau PV produit de l'électricité à courant continu, un onduleur approprié est nécessaire pour convertir le courant continu en courant alternatif[34].

Figure I.46 : Diagramme du pompage PV par pompe à AC.

I.12 Types des pompe

Selon l'emplacement de l'installation qui dépend du niveau d'eau, les pompes sont classées : pompe de surface et immergée en puits profond. En conséquence, le SPEPV est classé sur cette base de type de pompe utilisée[34].

A. Pompe volumétrique

La pompe volumétrique transmet l'énergie cinétique du moteur en mouvement de va-etvient permettant au fluide de vaincre la gravité par variations successives d'un volume raccordé alternativement à la l'orifice d'aspiration et à l'orifice de refoulement. Une pompe volumétrique comporte toujours une pièce mobile dans une pièce creuse qui déplace le liquide en variant le volume contenu dans la pièce creuse. Les deux derniers types sont utilisés dans les puits ou les forages profonds (plus de 100mètres). L'entrainement est habituellement assuré par un arbre de transmission très long, à partir d'un moteur électrique monté en surface [35].(Voir la figure (I.47))

Figure I.47 : Pompe à déplacement positif.

Le couple de démarrage est pratiquement indépendant du débit et sera proportionnel à la HMT (3 à 5 fois le couple nominale). La puissance consommée sera proportionnelle à la vitesse.

C'est pourquoi ces pompes sont habituellement utilisées pour les puits et les forages à grandes profondeurs et à petits débits d'eau inférieure à 5[m3 /h][34].

B. Pompe centrifuge

Les pompes centrifuges ont beaucoup d'avantages par rapport aux précédentes. Leur construction est également plus simple : deux parties principales, pas de clapet. Dans ces pompes, l'énergie mécanique est tout d'abord transformée en énergie cinétique, le liquide estmis en vitesse dans un impulser (roue et aube). L'énergie cinétique est ensuite transformée en énergie potentielle (de pression) par ralentissement de la vitesse du liquide dans une volute. La pression que peut donner une pompe centrifuge est liée à la vitesse de rotation de son axe et au diamètre de son impulser[35]. (Voir la figure (I.48))

Figure I.48 : Pompe centrifuge.

Les caractéristiques des pompes centrifuges sont très différentes des précédentes :

• Le couple de démarrage est faible, principalement lié à l'inertie des éléments mobiles.

• La pompe offre, pour une vitesse donnée, différentes possibilités de débit et de pression.

Une pompe centrifuge est mal adaptée pour de faibles débits et de grande hauteur contrairement

à sa cousine volumétrique. Signalons enfin que la pompe centrifuge ne peut pas aspirer l'air et donc elle n'est pas auto-amorçant[34]

I.13 . Position de pompe

Le choix d'une pompe se fera en fonction des caractéristiques hydrauliques de l'installation envisagée (débit, HMT) mais également en fonction des conditions particulières d'utilisation (puits, forage, pompage de rivière...)[34].

• Les pompes de surface : compte tenu du faible pouvoir d'aspiration limitant ainsi la hauteur d'aspiration (inférieure à 8 mètres), les pompes de surface voient leur utilisation très limitée plus particulièrement dans des sites présentant des conditions climatiques très sévères [36]

• Les pompes immergées : c'est la configuration la plus communément utilisée. Les pompes de refoulement sont immergées dans l'eau et ont soit leur moteur immergé avec la pompe (pompe monobloc), soit le moteur en surface. La transmission de puissance se fait alors par un long arbre reliant la pompe au moteur. Dans les deux cas, une conduite de refoulement après la pompe permet des élévations de plusieurs dizaines de mètres, selon la puissance du moteur. [34]

I.14 . Choix d'une pompe

Les pompes volumétriques à main peuvent s'avérer plus intéressantes pour de petites hauteurs et de faibles débits journaliers (H×Q<25 m3). L'utilisation de pompes mécaniques sur cette plage d'utilisation se limitera principalement aux pompes volumétriques de faible puissance.

Il est conseillé d'utiliser des pompes à aspiration pour les hauteurs de moins de 7 mètres ce qui correspond généralement au type centrifuge à ailettes. Pour de faibles débits et une puissance disponible variable, l'emploi d'une pompe volumétrique permet un débit plus constant.
Pour une hauteur moyenne, comprise entre 10 et 50 mètres, la pompe immergée centrifuge est généralement la plus efficace. Mais son rendement est très étroitement lié à la hauteur et son dimensionnement est critique. Pour les hauteurs supérieures à 35 mètres et de faibles débits journaliers (<20m3), la pompe volumétrique sera la plus utilisée. Pour des débits plus élevés, l'emploi d'une pompe centrifuge est souvent le seul choix possible [34].

I.15 .Electronique de commande

A. .Convertisseur DC/DC

Afin d'extraire à chaque instant le maximum de puissance disponible aux bornes du générateur PV et de la transférer à la charge (pompe alimentée par moteur à courant continu), la technique utilisée classiquement est d'utiliser un étage d'adaptation entre le générateur PV et la charge comme décrit dans la figure (I.45). Cet étage joue le rôle d'interface entre les deux éléments en assurant à travers une action de contrôle commandé par son rapport cyclique, le transfert du maximum de puissance fournie par le générateur pour qu'elle soit la plus proche possible de la puissance maximale disponible[34].

B. Convertisseur DC/AC

La fonction principale de l'onduleur est de transformer le courant continu, produit par les panneaux solaires en un courant alternatif triphasé pour actionner le groupe moteur pompe.

L'onduleur fonctionne évidemment avec un circuit de génération des signaux commandé par un circuit de régulation et de protection. Le convertisseur DC/AC assure le transfert optimal de puissance du générateur solaire vers le groupe moteur pompe et protègela pompe contre le fonctionnement à vide lorsqu'il n'y a pas d'eau dans le puits. Le rendement de l'onduleur est généralement élevé pour valoriser au mieux l'énergie produite par le générateur. Il est de l'ordre de 95 % au point de fonctionnement nominal [37] . (Voire la figure (I.49)).

Figure I.49 : Convertisseur DC/AC.

Conclusion :

En conclusion, ce chapitre a fourni une compréhension approfondie des systèmes photovoltaïques en examinant leurs principes de fonctionnement, les caractéristiques de leurs composants et les méthodes de modélisation mathématique. Cette base théorique est essentielle pour aborder les prochains chapitres, qui se concentreront sur les aspects pratiques et analytiques, permettant ainsi de mieux comprendre l'impact et le potentiel des systèmes photovoltaïques dans divers contextes.

Chapitre2 :

Dimensionnement du système à

simuler

II- Dimensionnement du système à simuler

Introduction

Le dimensionnement d'un système photovoltaïque est une étape cruciale pour garantir une production d'énergie solaire efficace et fiable. Cette démarche consiste à déterminer la taille optimale du système en fonction des besoins énergétiques, des conditions environnementales, et des contraintes techniques. Elle inclut l'évaluation des besoins en électricité, l'analyse de l'ensoleillement du site, et le calcul de la capacité des panneaux solaires nécessaires. De plus, il est essentiel de sélectionner les composants adéquats, tels que les onduleurs, les batteries, et les câbles, tout en tenant compte des réglementations locales. Un dimensionnement précis permet d'optimiser les performances du système, de maximiser les économies d'énergie, et de garantir un retour sur investissement attractif.

Dans ce chapitre, nous allons faire le dimensionnement d'une maison rurale, à savoir une ferme isolée à Bordjalbaal, Wilaya de Chlef. Cette étude se fera en deux parties :la première inclura la maison et un poulailler alimentés par un système photovoltaïque autonome (système off-grid) avec des batteries pour les jours d'autonomie, en suivant les étapes suivantes :

- L'estimation des besoins journaliers en électricité
- Estimation du champ photovoltaïque
- Estimation de la capacité de stockage et choix de la batterie
- Choix du régulateur et de l'onduleur
- Dimensionnement des câbles et plan de câblage

L'autre partie concerne l'installation d'une pompe solaire pour le puits de la ferme. Dans ce cas, notre système photovoltaïque sera également isolé, représentant un système de pompage direct « au fil du soleil », utilisant un réservoir pour les jours d'autonomie au lieu des batteries, en suivant ces étapes principales :

- Détermination de la hauteur manométrique totale
- Estimation de l'énergie hydraulique
- Évaluation de l'énergie électrique
- Calcul de la puissance crête
- Sélection du matériel

Toutes ces étapes débutent par la détermination de la localisation géographique du site d'étude.

II.1 .Présentation de la maison rurale

A. Localisation géographique

La maison rurale se situe dans le village de bordj albaal qui se trouve dans la wilaya de Chlef avec les coordinations suivantes :

Latitude [°] = 36,303, Longitude [°] = 0,826, Altitude [m] = 555

B. Description de la maison rurale

Notre maison rurale représente dans une ferme qui est constituée d'une maison, poulailler et un puits destiné à l'usage domestique et à l'irrigation des terres agricoles.

On va séparer notre étude théorique sur deux parties. L'un contient la maison et le poulailler alimentant par des panneaux solaires et l'autre partie s'agit de puits alimentant par une pompe solaire.

II.2 Partie 1. Maison et poulailler

A. Description de cette partie

La maison (02 Chambres, Salle de bain, Un salon, Hall, La cuisine) et le poulailler

B. L'estimation des besoins journaliers en électricité

La puissance totale de tous les équipements électriques de cette partie peut être déterminée en effectuant un bilan de puissance électrique. Ce bilan consiste à lister l'ensemble des équipements électriques, à évaluer la consommation de chaque appareil, et à calculer la puissance totale [38]

La pièce	Les équipements électriques
Chambre 1	- Une lampe
	- TV + Démo
Chambre 2	- Une lampe
	- PC
Salle de bain	- Deux lampes
	- Machine à laver
Salon	- Deux lampes
	- TV + Démo

Hall	- Deux lampes
Cuisine	- Deux lampes
	- Réfrigérateur
Poulailler	- Quinze lampes
	- Deux ventilateurs
	- Couveuse des œufs

 Tableau II.1 : Chaque pièce et leur équipement électrique.

Les équipements électriques	nents électriques Puissance unitaire (W)		Puissance totale
			(W)
Les lampes	20	25	500
TV + Démo	120	2	240
PC	65	1	65
Machine à laver	1000	1	1000
Réfrigérateur	300	1	300
Ventilateur	1100	2	2200
Couveuse des œufs	300	1	300
+ Les prises			20
Puissance totale de cette Partie (W)			4625

Tableau II.2 : Bilan de puissance électrique.

Il s'agit d'estimer la consommation d'équipements supposés connus. L'objectif est d'obtenir la consommation totale moyenne par jour. L'énergie totale moyenne nécessaire chaque jour.

E (*Wh/j*) est la somme des consommations énergétiques des divers équipements constituant le système à étudier, à savoir la télévision, les lampes d'éclairage, les appareils électroniques, etc...; Elle est donnée par la loi suivante[39] :

$$E = \sum i E_i \tag{II.1}$$

E : Consommation journalière moyen (Wh/j).

E_i : L'énergie journalière consommée d'un équipement (Wh/j).

Pour les équipements qui ne sont pas utilisés quotidiennement et pour tous les équipements à forte consommation, partez de la durée du cycle de fonctionnement de la tâche.

Ainsi, la consommation de chaque équipement peut être calculée comme suit[39] :

$$E_i = P_i \times t_i \tag{II.2}$$

Ei :L'énergie journalière consommée d'un équipement (Wh/j).

P_i:La puissance de cet équipement (W).

t_i :Le temps d'utilisation (h)

Les équipements	Puissance totale (W)	Durée/jour (h)	Energie
			consommée/jour
			(Wh/j)
Les lampes	500	6	3000
TV + Démo	240	6	1440
PC	65	4	260
Machine à laver	1000	1	1000
Réfrigérateur	300	24	7200
Ventilateur	2200	6	13200
Couveuse des œufs	300	24	7200
+ Les prises	20	24	480
Consommation journalière moyen (WI		n (Wh/j)	33780

Tableau II.3 : Consommation de la maison et le poulailler.

Nous considérons toutes les pertes de système (les panneaux, le régulateur, l'onduleur, les batteries...) pour trouver la bonne consommation journalière moyen total (Wh/j).

On présente ces pertes par un pourcentage de 20% qui nous donne le nouveau résultat suivant :

$$E_j = E + (0,2E)$$
 (II.3)
 $E_j = 40,536 \, KWh/j$

E_j : Consommation journalière moyen total (KWh/j).

E : Consommation journalière moyen (Wh/j)

C. Le choix des panneaux solaires pour cette installation

Connaitre l'irradiation (ensoleillement, ou rayonnement solaire) de notre site géographique de l'étude est un critère essentiel dans le calcul des nombres des panneaux solaires de cette installation photovoltaïque.

Ce coefficient dépend de la position géographique de chaque pays et peut être choisir selon le mois le plus défavorisé du lieu d'étude pour avoir un système fonctionnant quelles que soient les intempéries de la nature.[40] Dans notre cas, on a choisi selon les maps de « solargis » pour une valeur moyenne d'irradiation qui est : Ir = 5,5KWh/m2/jour.

Figure II.1 : Moyenne de l'irradiation directe sur l'Algérie.

Ensuite, C'est très important de choisir la tension de travail du système en courant continu, car cette tension en fonction de la charge influe directement sur le choix des systèmes de conversion et de régulation, ainsi que sur le câblage et aussi sur les appareils à usage domestique. On peut citer un exemple de choix de la tension suivant la puissance de la Charge [39]:

Puissance totale	< 500 W	500W - 2KW	>2KW
(W)			
Tension du système	12 VDC	24 VDC	48 VDC
(V)			

 Tableau II.4 : Tensions du système correspondantes à chaque intervalle de puissance crête.

On a déjà trouvé la puissance totale de cette partie d'étude (Tableau II.2) qui est : 4625 W avec 4,625 KW > 2 KW et selon le tableau précédemment, on va travailler avec une tension du système de **48 VDC**.

Maintenant, on calcule la puissance crête totale des panneaux solaire nécessaires pour notre installation photovoltaïque par la relation suivante :

$$P_{c} = \frac{E_{j}}{Ir}$$
(II.4)
$$P_{c} = \frac{40,536}{5,5} = 7,37KW = 7370W$$

P_c : Puissance crête totale (W)

E_j : Consommation de notre site d'étude (KW)

Ir : L'irradiation de notre site d'étude

Sur le marché il existe plusieurs gammes de puissances de panneaux solaires, mais ici nous allons choisir les panneaux solaires les plus puissants et grandes produite par ENIE (Entreprise Nationale des Industries Electroniques à Sidi Belabes) de model ENIESOLAR-310-72-p(325Wc) qui a les caractéristiques suivantes :

Module	Caractéristiques du module
	Poly cristallin
	Puissance crête : 325Wc
	Puissance maximale nominale : 310W
	Tension du module : 12V
ENIESOLAR-310-72-p	Tolérance : +/- 3%
	Vmp : 36.9V ; Imp : 8.6A
	Courant court-circuit Icc : 9.1A
	Tension circuit-ouvert : 45.6V
	Tension max du système : 600V
	Dimension : 1959*991*35mm

Tableau II.5 : Caractéristiques du panneau utilisé.

Figure II.2 : Exemple de panneau solaire.

Figure II.3 : Plaque signalétique de panneau utilisé.

Soit N le nombre des panneaux solaires nécessaires pour notre installation photovoltaïques par la loi suivante :

$$N = \frac{P_c}{P_m}$$
(II.5)
 $N = \frac{7370}{325} = 22,67 \ Panneaux$

N : Nombre des panneaux solaires nécessaires.

Pc : Puissance crête totale (W).

Pm : Puissance d'un panneau solaire (W).

Ce résultat nous mettait entre deux choix des nombres des panneaux solaires qui s'agissent des 22 panneaux ou bien 24 panneaux, mais notre choix peut être défini par vérifier le nombre des panneaux qui va nous donner une puissance crête suffisante et plus grande que la consommation journalière moyenne totale par la méthode suivante :

$$P_{j} = N \times P_{m} \times Ir$$

$$P_{j1} = 22 \times 325 \times 5,5 = 39325 Wh/j$$

$$P_{j2} = 24 \times 325 \times 5,5 = 42900 Wh/j$$
(II.6)

P_j: Puissance total production par les panneaux solaires.

N : Nombres des panneaux solaire nécessaires.

- P_m: Puissance d'un panneau solaire (W).
- Ir :L'irradiation de notre site d'étude

$$P_j \ge E_j$$
 (II.7)
 $P_{j1} < 40536 Wh/j$
 $P_{j2} > 40536 Wh/j$

Le nombre des panneaux solaires suffisant pour notre installation photovoltaïque est N=24 selon $P_{j2} = 42900$ Wh/j.

Nos 24 panneaux solaires vont être branchés en sériée en parallèle par :

$$Nms = \frac{Vdc}{Vm}$$
 (II.8)
 $Nms = \frac{48}{36.9} = 1,30 \approx 2$

Nms : Nombre des modules en série.

Vdc : Tension DC du système (V).

Vm : Tension d'un module ou Vmp(V).

Remarque : Nous allons utiliser un régulateur de charge qui accepte une tension d'entrée de 73,8 V et fournit une tension de sortie de 48 V correspondant à notre système.

$$Nmp = \frac{N}{Nms}$$
(II.9)
$$Nmp = \frac{24}{2} = 12$$

Nmp : Nombres des modules branchés en parallèle.

N : Nombres des panneaux solaires nécessaires.

Nms : Nombres des modules en série.

Figure II.4 : Photo du montage des panneaux solaires câblés en parallèle et en séries.

Dernièrement, L'inclinaison optimale d'un panneau solaire est souvent proche de la latitude du lieu où il est installé. Pour maximiser l'énergie solaire captée tout au long de l'année, il peut être utile d'ajuster l'inclinaison des panneaux selon les saisons.

Mais, dans notre cas, on préfère une inclinaison fixe standard et optimisée pour une production annuelle maximale qui s'agit de **30°**.

D. Détermination de la capacité et le choix de la batterie

Pour déterminer le nombre et la capacité de stockage des batteries utilisent pour cette installation photovoltaïque, on commence par la loi suivante :

$$Ah_a = \frac{Ah_d \times TC \times DA \times DM}{DoD}$$
(II.10)

Ah_a : Capacité de la batterie ajustée en Ampère [A/h]

 Ah_d : C'est la consommation quotidienne moyenne en ampères-heures (Ah/j), donnée par la division de la consommation journalière moyenne totale (KWh/j) sur la tension du système (48VDC).

$$Ah_{d} = \frac{E_{j}}{Tension \, du \, systeme}$$
(II.11)
$$Ah_{d} = \frac{40,536}{48} = 844.5 \, Ah/j$$

TC: Facteur de correction de température est utilisé lors du dimensionnement d'une batterie pour tenir compte de l'effet de la température ambiante sur la performance de la batterie. En règle générale, la capacité nominale d'une batterie est spécifiée à une température de référence (généralement 25°C), mais cette capacité peut varier avec la température. Selon le tableau cidessous, notre **TC=1**.

(⁰F)	(°C)	Flooded (FLA)	AGM	GEL
77	25.0	1.00	1.00	1.00
50	10.0	1.19	1.08	1.11
32	0	1.39	1.20	1.25
14	-10	1.70	1.35	1.42

TEMPERATURE CORRECTION FACTOR

Figure II.5 : Tableau des facteurs de correction selon la température.

DA : les jours d'autonomie représentent le nombre de jours pendant lesquels l'énergie stockée dans les batteries peut suffire à couvrir la consommation électrique de l'utilisateur sans avoir besoin de recharger les batteries. Cela est crucial pour assurer un approvisionnement en électricité continu, même pendant les périodes sans soleil ou en cas de coupure de courant prolongée. Pour cette installation, on va prendre**3 jours** comme durée d'autonomie.

DM : marge de conception est une mesure de la sécurité ou de la marge de sécurité incorporée dans la conception des batteries pour compenser les incertitudes ou les variations imprévues qui peuvent survenir pendant le fonctionnement qui s'agit d'une valeur de 1.

DoD :Le facteur de profondeur de décharge indique la quantité d'énergie de la batterie que vous êtes prêt à utiliser avant de la recharger. Cela varie en fonction du type de batterie et faire varier la durée de vie de chaque batterie. Pour notre cas, on suppose que le facteur de décharge **DoD=100%**

Figure II.6 : L'effet du DoD sur la durée de vie d'une batterie.

Maintenant, on peut calculer par la relation (II-8) la capacité des batteries suffisante pour notre installation photovoltaïque selon les jours d'autonomie et les autres facteurs prédéterminée :

$$Ah_a = \frac{844,5 \times 1 \times 3 \times 1}{100\%} = 2533,5 \ Ah \approx 2600 \ Ah$$

À partir de ces donnes, notre meilleur choix des batteries disponibles est ROLLS SERIE 5000-12CS 11P (12v/479Ah)

Batterie	Caractéristiques de batterie
	Capacitéde la batterie : 479Ah
	Tension nominale : 12v
	Dimension : 559 x 286 x 464mm
Rollsopzsseries 5000 12CS 11P (C100)	Poids : 123Kg
	Temps de décharge : 100h pour 4.79A
	Durée de vie : >10ans
	Batteries plomb ouvert à plaques épaisses
	DoD : 1500 cycles pour 100%

Tableau II.6 : Caractéristiques de la batterie choisie.

Figure II.7 :Photo de la batterie Rolls 5000 12CS.

Le nombre des batteries en série est défini par :

$$Nbs = \frac{Vdc}{Ve}$$
(II.12)
$$Nbs = \frac{48}{12} = 4$$

Nbs : Nombre des batteries en série.

Vdc : Tension DC du système (V).

Ve : Tension d'un nombre des batteries (V).

Le nombre de branches en parallèle est défini par :

$$Nbp = \frac{Ah_a}{Ce}$$
(II.13)
$$Nbp = \frac{2600}{479} = 5,42 \approx 6$$

Nbp : Nombre de branches en parallèle.

Ah_a : Capacité de la batterie ajustée ampères-heures (Ah)

Ce : Capacité d'un nombre des batteries (Ah).

Alors le nombre total des batteries pour notre installation photovoltaïque est :

$$Nbt = Nbs \times Nbp$$
(II-14)
$$Nbt = 4 \times 6 = 24 \text{ batteries}$$

Nbt : Nombre total des batteries.

Nbs : Nombre des batteries en série.

Nbp : Nombre des batteries en parallèle.

Figure II.8 : photo du montage des batteries branchés en série et en parallèle.

E. Choix du régulateur

Le régulateur photovoltaïque, pièce centrale de l'installation, doit être compatible avec les autres éléments (champ photovoltaïque et parc de batteries), que contrôle la charge et décharge pour protégé les batteries [39]. Pour dimensionner un régulateur, en doit calculer l'intensité du courant de ce régulateur par la loi suivante en prenant en compte un facteur de sécurité de 1.25 :

$$I_{reg} = 1,25 \times I_{cc} \times Nmp$$
 (II.15)
 $I_{reg} = 1,25 \times 9,1 \times 12 = 136,5 A$

Ireg : Courant du régulateur à choisir.

Icc : Courant court-circuit du panneau.

Nmp : Nombres des modules branchés en parallèle.

Une valeur élevée plus que ce qui doit être, de l'intensité du courant du régulateur de charge est sans inconvénient sur le système, mais une valeur inferieur à la normale est néfaste pour le fonctionnement de l'installation [40]. Alors on va prendre une valeur supérieure de $I_{reg} \approx 140$ A.

Nous allons donc choisir deux (2) régulateurs de charge branché en parallèle de 85A et une tension de 48V qui s'agit du régulateur produite par « victronenergy » de type **Smart Solar MPPT150/85.**

Figure II.9 : Photo de régulateur.

régulateur	Caractéristiques de régulateur	
	Entrée PVjusqu'à 150Vcc	
	Tension de la batterie 48V	
Victronenergy	Une sortie de 85A	
SmartSolar MPPT 150/85	Bluetooth Smart intégré	
	Puissance d'entrée PV nominale de 4900 W	
	Efficacité maximale de 98%	
	Poids : 4.5 Kg	
	Dimensions :246 x 295 x 103	

Tableau II.7 : Caractéristiques de régulateur à choisir.

Remarque :Chaque régulateur va être branché avec 12 panneaux solaires (2 séries de 6 panneaux en parallèle) avec les deux régulateurs être branché en parallèle pour augmenter le courant et avoir une intensité plus grande que 140 A.(VoirFigure II.11).

F. Choix de l'onduleur

Nous devons d'abord estimer la puissance totale consommée qui est la somme de toutes les puissances des équipements du site en prenant en conservation de multiplier la puissance par quatre(04) pour tous les équipements qui sont besoins d'une puissance de démarrage élevé tels que : frigo et machine à laver...) :

$P_{tc} = 16025 W$

Ensuite on va calculer la puissance de notre convertisseur (onduleur) à choisir en prenant un facteur de sécurité de 25% ou 30% :

$$P_{on} = P_{tc} + 0.25P_{tc}$$
(II.16)

$$P_{on} = 16025 + 4006 = 20031 W = 20 KW$$

Selon ces résultats, on est besoin d'utiliser un onduleur de type SunnyTripowerX 20.

Onduleur	Caractéristiques d'onduleur
	Efficacité maximale : 98%
	Tension d'entrée maximale de 1000 V
	Puissance d'entrée DC max : 30 KW
SunnyTripowerX 20	Puissance de sortie AC nominal : 20 KW
	Poids : 35 Kg
	Dimensions : 728 x 762 x 266mm

Tableau II.8 : Caractéristiques d'onduleur à choisir.

Figure II.10 : photo d'onduleur Smatripower X utilisé.

G. Dimensionnement des câbles

Pour assurer un rendement optimal, il est crucial de limiter la longueur des câbles dans le câblage. Chaque mètre supplémentaire de câble peut entraîner une perte significative de puissance. Le tableau ci-dessous répertorie les distances maximales recommandées entre les différents équipements pour garantir une efficacité maximale du câblage[40]:

Les équipements à câbler	La distance maximale à respecter
Panneaux solaires - Régulateur	10 m
Régulateur - Batteries	3 m
Batteries - Onduleur	4 m

Tableau II.9 : Référence du câblage entre les équipements.

Pour le câblage entre les panneaux solaires et le boitier de raccordement, on utilise les câbles incorpores aux panneaux car le boitier est situé juste au-dessous des panneaux. Ensuite, On utilise la formule suivante pour définir la section des câbles à choisir entre les autres équipements :

$$S = \frac{L \times I_{max}}{\gamma \times V_{drop}}$$
(II.17)

S : Section du câble à choisir (mm²).

L : Longueur des câbles entre les composants à câbler (m).

 I_{max} : L'intensité du courant entre les compositions à câbler (A).

 γ :Conductivité de la matière de câble (en cuivre =58m/ Ω .mm²)

 V_{drop} : Chute de tension maximale (avec $\Delta U=2\%$).

On va calculer la section du câble entre les panneaux solaires (le boitier de raccordement) et le régulateur en supposant une longueur de câble de 7m (car 7m est la longueur moyenne admissible et n'oubliez pas que lors des calculs, toutes les longueurs sélectionnées doivent être multipliées par deux):

$$I_{max} = Nmp \times I_{cc} \times F_s$$

$$I_{max} = 12 \times 9,1 \times 1,25 = 136.5 A$$
(II.18)

Nmp : Nombres des modules branchés en parallèle.

Icc: Courant court-circuit du panneau.

F_s : Facteur de sécurité.

$$V_{drop} = \frac{2}{100} \times Nms \times Vmp$$

$$V_{drop} = \frac{2}{100} \times 2 \times 36,9 = 1,476 V$$
(II.19)

Vmp : Tension à puissance maximale.

Nms :Nombre des modules en série.

$$S = \frac{14 \times 136,5}{58 \times 1,476} = 22,32mm^2$$

Alors la section du câble à choisir est $S = 25 \text{ mm}^2$.

On va calculer la section du câble entre le régulateur et les batteries en supposant une longueur de câble de 3 m :

$$I_{max} = 12 \times 9,1 \times 1,25 = 136,5 A$$
$$V_{drop} = \frac{2}{100} \times 48 = 0,96$$
$$S = \frac{6 \times 136,5}{58 \times 0,96} = 14,70 mm^2$$

Alors la section du câble à choisir est $S = 16 \text{ mm}^2$.

Ensuite, On va calculer la section du câble entre les batteries et l'onduleur en supposant une longueur de câble de 4 m :

$$I_{max} = \frac{P_{on}}{V dc \times \eta_{on}}$$
(II.20)

$$I_{max} = \frac{20000}{48 \times 0.98} = 425,17 \, A$$

Pon : Puissance d'onduleur (W).

Vdc : Tension DC du système (V).

 η_{on} : Rendement ou efficacité d'onduleur.

$$V_{drop} = \frac{2}{100} \times 48 = 0,96$$
$$S = \frac{8 \times 425,17}{58 \times 0,96} = 61,08 \ mm^2$$

Alors la section du câble à choisir est $S = 70 \text{ mm}^2$.

H. Résultats et composants de cette partie

Voici dans le tableau ci-dessous le résume de notre résultat du calcul qui représente les composants de notre installation photovoltaïque pour cette partie d'étude (maison et poulailler) :

Les composants	Modèle	Quantité
Panneaux solaire	ENIE SOLAR 310-72-p	24
Batteries	Rollsopzsseries 5000 12CS 11P (C100)	24
Régulateur	VictronenergyMPPT 150/85	2
Onduleur	SunnyTripowerX 20	1

 Tableau II.10 : Les composants de notre installation PV.

Figure II.11 : Schéma de montage des composants de cette partie d'installation PV.

II.3 Partie 2. Le puits

A. Description de cette partie

Un puits de 70 mètres qui a un niveau statique constant de 20 mètres, destiné à l'irrigation pour 2 hectares d'une terre agriculture de blé et à l'usage domestique avec l'aide d'un réservoir.

B. Estimations des besoins en eau

Les besoins en eau ETM du blé(ETM : Evapotranspiration maximale)au niveau de la wilaya de Chlef est : **7818 m³/hectare/année** [41] et les besoins d'eau pour l'usage domestique estimés de **48 m³/année**. Alors, on peut inclure les données suivantes :

Les besoins annuels d'eau	15684 m ³ /année
Les besoins d'eau journaliers	43 m³/jour
Débit horaire nécessaire	8.6 m ³ /heure
Heures d'ensoleillement ou pompage	5 heures

 Tableau II.11 : Résume des besoins d'eau pour cette partie.

C. Calcule de la hauteur manométrique totale

La hauteur manométrique totale (HMT) d'une pompe est différence de pression en mètres de colonne d'eau entre les orifices d'aspiration et de refoulement [42].

Cette hauteur peut être calculée comme suit[34] :

$$HMT = H_g + P_{ch} \tag{II.21}$$

HMT : La hauteur manométrique totale.

 P_{ch} : Les pertes de charge produites par le frottement de l'eau sur les parois des conduites, ces P_{ch} correspondent au plus à (10%à20%).

 H_g : La hauteur géométrique entre la nappe d'eau pompée et le plan d'utilisation avec :

$$H_q = H_r + N_d \tag{II.22}$$

 H_r : La hauteur statique est la distance entre le sol jusqu'au point le plus élevé auquel on doit pomper l'eau en(m).

 N_d : Le niveau dynamique d'un puits ou d'un forage est la distance du à la surface de l'eau pour un pompage a un débit donne [42].

La différence entre le niveau dynamique et le niveau statique est appelée rabattement Rmest le rabattement maximal acceptable avant de stopper la pompe [34] (voir la figure cidessous).

Figure II.12 : Schéma représente les paramètres de HMT.

Figure II.13 : Schéma représente les paramètres de notre cas d'étude.

C.1 Dimensionnement de la conduite d'eau

Il est possible d'obtenir analytiquement les diamètres des tuyauteries de pompage qui s'approximent à ceux qui minimisent les couts des installations par la formule de Bresse [34]:

$$D = K\sqrt{Q} \tag{II.23}$$

D : Diamètre de la tuyauterie(m).

K : Coefficient qui varie de 0,75à1,40.

Q : Débit nécessaire (m^3/s) .(Avec Q=0,00238m^3/s)

Mais, le diamètre de la canalisation commerciale le plus approximatif et approprié aux appareils utilisés pour un meilleur résultat est donné par la relation [43] :

$$D = \sqrt{Q}$$
(II.24)
$$D = \sqrt{2,38 \times 10^{-3}} = 0,048 m$$

Alors, le conduit disponible commercialement et fabriqué avec un diamètre supérieur à 0,05 m est de 0,06 m, soit **60 mm.**

Ensuite, L'équation de continuité est :

$$Q = \frac{\pi D^2}{4} V \tag{II.25}$$

V :La vitesse moyenne du fluide , qui peut être extraite de l'équation précédente pour avoir :

$$V = \frac{4Q}{\pi D^2}$$

$$V = \frac{4 \times 2.38 \times 10^{-3}}{\pi (60 \times 10^{-3})^2} = 0.84 \, m/s$$
(II.26)

C.2 Calcule les pertes de charge linéaire

Pour calculer les pertes de charge linéaire, on utilise la loi de Darcy – Weisbach [44] :

$$\Delta H_L = \frac{\lambda V^2 L}{2 g D} \tag{II.27}$$

 ΔH_L : Pertes de charge linéaire.

 λ : Coefficient de perte de charge.

L : Longueur de canal ou la conduite considérée (m).

g : Constante d'accélération (9,81m/s²)

D'abord, pour connaître le coefficient de perte de charge λ , il faut calculer le nombre de Reynolds par la loi suivante [43] :

$$R_e = \frac{VD}{v}$$

$$R_e = \frac{0.84 \times 0.06}{10^{-6}} = 50400$$
(II.28)

R_e : Nombre de Reynolds.

V : Viscosité cinématique de l'eau (10-6à20°C).

Alors, on a trouvé $R_e > 2300$ qui signifie le cas d'un régime turbulent et avec $R_e < 10^5$ on peut utiliser la formule de Blasuis [44] pour calculer le coefficient λ comme suit :

$$\lambda = \frac{0.3164}{R_e^{0.25}}$$

$$\lambda = \frac{0.3164}{50400^{0.25}} = 0.021$$
(II.29)

Maintenant, on peut calculer les pertes de charge linéaire selon la relation précédente (II.29) avec une longueur du canal de 50.5 mètres :

$$\Delta H_L = \frac{0.021 \times (0.84)^2 \times 50.5}{2 \times 9.81 \times 0.06} = 0.63m$$

C.3 Calcule les pertes de charge singulières

Les pertes de charge singulières se représentent dans des courbes ou des vannes selon notre cas d'étude et chacun son coefficient de perte de charge comme identifier dans la figure ci-dessous [45]:

Vitesse	Courb	es à angle	vifα			α = 90	° courbes	à angle a	rrondi		Vannes standard	Clapets de pied	Clapets de non retour
l'eau m/sec	α = 30°	α = 40°	α = 60°	α = 80 °	α = 90°	$\frac{d}{R} = 0.4$	<u>d</u> <u>d</u> = 0,6	$\frac{d}{R} = 0.8$	$\frac{d}{R} = 0,1$	<u>d</u> = 1,5	Ţ		Ð
0,4	0,43	0,52	0,71	<mark>1</mark> ,0	1,2	0,11	0,13	0,16	0,23	0,43	0,23	32	31
0,5	0,67	0,81	1,1	1,6	1,9	0,18	0,21	0,26	0,37	0,67	0,37	33	32
0,6	0,97	1,2	1,6	2,3	2,8	0,25	0,29	0,36	0,52	0,97	0,52	34	32
0,7	1,35	1,65	2,2	3,2	3,9	0,34	0,40	0,48	0,70	1,35	0,70	35	32
0,8	1,7	2,1	2,8	4,0	4,8	0,45	0,53	0,64	0,93	1,7	0,95	36	33
0,9	2,2	2,7	3,6	5,2	6,2	0,57	0,67	0,82	1,18	2,2	1,20	37	34
1,0	2,7	3,3	4,5	6,4	7,6	0,7	0,82	1,0	1,45	2,7	1,45	38	35
1,5	6,0	7,3	10	14	17	1,6	1,9	2,3	3,2	6	3,3	47	40

Figure II.14 : Les coefficients des pertes de charge singulières en cm.

Ensuite, on utilise la formule suivante [43] en prenant en compte qu'on a 3 courbes (90°) et une vanne(voir figure II.14) :

$$\Delta H_S = \Sigma \frac{K_i V^2}{2 g}$$
(II.30)
$$\Delta H_S = \frac{(3 \times 4,8 + 0.95) \times 0.84^2}{2 \times 9,81} = 0,55 cm = 0,005 m$$

K_i : Coefficient des pertes singulières.

Alors, on trouve les pertes de charge totale comme suit :

$$P_{ch} = \Delta H_L + \Delta H_S$$
(II.31)

$$P_{ch} = 0,63 + 0,005 = 0,635m$$

$$H_g = 10 + 24,65 = 34,65 m$$

Avec un rabattement Rm : 4.65 pour un débit d'eau de 8,6 m³/h.

Finalement, on calcule la hauteur manométrique totaleHMT :

$$HMT = 34,65 + 0,635 = 35,285m$$

Remarque : dans ce cas les pertes de charges totales ne représentent que 1,83% duHMT.

D. Détermination de l'énergie hydraulique

Une fois les besoins nécessaires en volume d'eau pour une année et les caractéristiques du puits sont définis, nous pouvons calculer l'énergie hydraulique moyenne journalière et mensuelle nécessaire à partir de la relation [34] :

$$E_h = C_h \times Q \times HMT \tag{II.32}$$

E_h : Energie hydraulique (Wh/j).

Q : Débit d'eau en (m^3/j) .

C_h : Constante hydraulique est calculée par la relation suivante :

$$C_{h} = \frac{g \rho}{3600}$$
(II.33)
$$C_{h} = \frac{9,81 \times 1000}{3600} = 2,725 (Kg.s.h/m^{2})$$

 ρ : Densité de l'eau (1000Kg/m³).

$$E_h = 2,725 \times 43 \times 35,285 = 4134,51 Wh/j$$

E. Détermination de l'énergie électrique

L'énergie nécessaire pour pomper une certaine quantité d'eau sur une certaine hauteur donnée pendant une journée est calculée à partir de l'équation suivante[34]:

$$E_e = \frac{E_h}{\eta_p}$$

$$E_e = \frac{4134,51}{0,5} = 8269,02 Wh/j$$
(II.34)

Ee : Energie électrique Wh/j.

 η_p : Le rendement de motopompe environ 50% [46].

F. Choix de la pompe

Le schéma ci-dessous nous guide dans le choix de la bonne pompe en fonction de nos données disponibles ainsi que la puissance de la pompe réelle doit être supérieure à la puissance électrique demandée (E_p) trouvéepar l'utilisation d'équation suivante :

$$E_p = \frac{E_e}{D_h}$$
(II.35)

$$E_p = \frac{8269,02}{5} = 1653,8 W$$

E_p : Energie électrique de la pompe (W).

 $D_h: La \ durée \ d'ensoleillement \ dans \ notre \ région \ d'étude \ en \ (nombre \ d'heures \) \ du \ mois \ le \\ plus \ défavorable \ qui \ est \ décembre \ avec \ une \ valeur \ de \ 5h$

Figure II.15 : Schéma durée d'insolation.

Figure II.16 : Choix d'une pompe selon la hauteur et le débit demandés.

Alors, nous pouvons noter qu'il faut choisir une **pompe centrifuge immergée multiétages** et parmi les pompes disponibles sur le marché qui correspondent aux données obtenues précédemment, le meilleur choix est « **Grundfos SP 9-11** » qui a les caractéristiques suivantes :

Pompe	Caractéristiques
	Débit nominal : 9 m ³ /h
	Hauteur nominal : 57.5 m
Grundfos SP 9-11	Etages: 11
	Puissance nominal : 2.2 KW (3 chevaux)
	Triphasé
	Courant nominal : 12.2 A

Fréquence : 50 Hz
Poids net : 26.6 Kg

 Tableau II.12 : Caractéristique du pompe « Grundfos SP 9-11 ».

Figure II.17 : Photo de notre pompe.

G. Choix d'onduleur

Les moteurs AC tels que le moteur de notre pompe sélectionnée ne requièrent pratiquement pas de maintenance et s'avèrent souvent plus efficaces que les moteurs DC mais requièrent l'emploi d'un onduleur[42] qu'il faut avoir une puissance supérieure de celle de notre pompe immergée.

Notre choix va être l'onduleur « SMA Sunny Boy 3.0 » avec les caractéristiques suivantes :

Onduleur	Caractéristiques
	Puissance d'entrée DC maximale : 5500 W
	voltage range : 110 à 500 V
	Tension d'entrée DC nominale : 365 V
SMA Sunny Boy 3.0	Courant d'entré DC maximal : 20 A
	Puissance de sortie AC maximale : 3000 W
	Courant de sortie AC maximal jusqu'à 13.7 A
	Fréquence : 50 Hz, 60 Hz

Tableau II.13 : Caractéristiques d'onduleur « Sunny Boy 3.0 ».

Figure II.18 : Photo d'onduleur Sunny Boy 3.0.

H. Calcule de la puissance crête

La puissance de pointe maximale du champ PV en (W) qui doit être installée pour fournir l'énergie électrique demandée à la pompe le volume maximum d'eau est calculée par l'équation [34]:

$$P_{c} = \frac{E_{e}}{D_{h} (1 - \Delta_{c})}$$
(II.36)
$$P_{c} = \frac{8269,02}{5 (1 - 0,7)} = 5512,68 W$$

P_c:Puissance-crête en watt (W).

 Δ_c : Représente l'ensemble des pertes de charge électrique (en prenant 0,7) [43]

I. Choix des panneaux solaires

On va utiliser les mêmes panneaux solaires précédents d'ENIE SOLAR 310-72-p((voir tableau II.5).).Le nombre total de modules photovoltaïques est calculé par l'expression suivante [34]:

$$N_M = \frac{P_c}{P_M}$$
(II.37)
$$N_M = \frac{5512,68}{325} = 16,96$$

N_M : Nombre total des panneaux solaires.

P_M : La puissance du module PV(W).

Alors, la mise en place de cette installation photovoltaïque pour notre puits exige l'installation de **16** panneaux solaires.

Pour trouver la tension convenable à l'alimentation d'une charge donnée par la mise en série de plusieurs modules PV, le nombre de ces modules est calculé par l'expression suivante [34]:

$$N_{s} = \frac{V_{ch}}{V_{M}}$$
(II.38)
$$N_{s} = \frac{365}{45.6} = 8$$

N_s : Le nombre de modules en série.

 V_{ch} : La tension nominale de la charge(V).

 V_M : La tension maximale de modules(V).

Ensuite, Le nombre de branches est calculé comme suit :

$$N_b = \frac{N_M}{N_s} \tag{II.39}$$

$$N_b = \frac{16}{8} = 2$$

Nb : Le nombre de branches.

 ∧ ×	1		Tens	ion: 36.9 x	8 = 295.2	V		
é: 8.6 7.2 A		+ +	+ +			-	- +	
Intensite		•	•	•	•	- *	• •	•

Figure II.19 : Schéma du montage de nos 16 panneaux en série et parallèle.

J. Capacité du réservoir

Rappelons que la technique de pompage choisi pour notre cas est le pompage dit « au fil de soleil ». Le stockage de l'eau est effectué dans un réservoir. La capacité de ce dernier est calculée pour répondre au besoin d'eau pendant les jours d'autonomie. Celui-ci varie d'un à plusieurs jours [34].

Pour notre exemple, le calcul de la capacité de stockage vise à garantir une autonomie de trois (3) jours, assurée par le réservoir suivant :

Réservoir rectangulaire	
Volume	130 m ³
Hauteur	6 m
Longueur	7 m

Largeur	3.10 m

Tableau II.14 : Les dimensionne du réservoir.

K. Dimensions du câblage

Le choix du câble est primordial pour le bon fonctionnement du système pompage PV. Une section de câble insuffisante va provoquer une grande perte d'énergie. Le dimensionnement du câble est défini par le courant et la tension qui le traverse ainsi que par sa longueur. La section des câbles, S, peut se calculer par la formule suivante [34]:

$$S_c = \frac{\rho L_c I_c}{V_c \varepsilon}$$
(II.40)

 S_c : Section de câble (mm²).

P : Résistivité du câble (pour le cuivre :0,017 Ω mm²/m)

L_c : Longueur du câble (m).

I_c : Courant que traverse la câble (A).

V_c : Tension au départ du câble (V).

 ϵ : Chute de tension (3% pour partie DC, et 5% pour partie AC).

a) Partie DC

On va calculer la section du câble dans la partie DC qui s'agit entre le champ PV (les panneaux solaires) et l'onduleur en supposant une longueur de câble solaire de 40 m :

$$S_{DC} = \frac{0,017 \times 40 \times 17,2}{0,03 \times 295,2} = 1,32mm^2$$

Alors la section du câble à choisir est $S = 2,5 \text{ mm}^2$.

b) Partie AC

On va calculer la section du câble dans la partie AC qui s'agit entre l'onduleur et la pompe immergée en supposant une longueur de câble solaire de 90 m :

$$S_{AC} = \frac{0.017 \times 90 \times 13.7}{0.05 \times 220} = 1,905 mm^2$$

Alors la section du câble à choisir est $S = 2, 5mm^2$

L. Résultats et composants de cette partie

Voici dans le tableau ci-dessous le résume de notre résultat du calcul qui représente les composants de notre installation photovoltaïque pour une pompe solaire de cette partie d'étude (puits) :

	Composants	Valeur unitaire	Nombre
	Longueur	50.5 m	
Tuyauterie	Diamètre	0.06 m	
	Vitesse d'eau	0.84 m/s	
	Courbe 90°	4.8 cm	3
Accessoires	vanne	0.95 cm	1
	Panneaux« ENIE SOLAR 310-72-p »	325 W	16
Système	Onduleur « SMA Sunny Boy 3.0 »	3000 W	1
photovoltaïque	Pompe immergée « Grundfos SP 9-11 »	2200 W	1

Tableau II.15 : Résume des composants et résultats pour cette partie d'une pompe solaire.

Figure II.20 : Schéma des composants de notre pompage solaire.

Conclusion

Dans ce deuxième chapitre, nous avons exposé les étapes nécessaires à la conception d'un système photovoltaïque autonome pour les deux parties. Cela implique le dimensionnement de chaque élément de la chaîne photovoltaïque, comme le reflètent les résultats obtenus.

Chapitre 03 :

Simulation et résultats

III-Simulation et résultats

Introduction

La simulation est un élément essentiel dans le développement et l'optimisation des systèmes photovoltaïques. Elle permet non seulement de réduire les coûts et les risques associés à la mise en place de nouveaux systèmes, mais aussi de maximiser leur efficacité et leur fiabilité. Avec l'augmentation de la demande en énergies renouvelables, les outils de simulation deviennent de plus en plus sophistiqués et accessibles, rendant cette technologie encore plus incontournable.

Dans ce chapitre, nous allons utiliser le logiciel « PVsyst 7.3 » pour déterminer toutes les caractéristiques visées pour nos deux parties d'étude, en simulant chacune séparément. Sans négliger l'impact des conditions météorologiques locales, l'importance du site géographique est cruciale dans la simulation avec PVsyst, car les conditions locales d'ensoleillement et de température influencent directement les performances du système photovoltaïque. Nous allons tout d'abord utiliser le logiciel « Meteonorm 8 » pour obtenir ces données météorologiques, car les données de notre site d'étude ne sont pas disponibles dans PVsyst.

III.1 Etudes des logiciels utilises

A. Présentation du logiciel Meteonorm 8.0

Meteonorm 8.0 est une combinaison unique de sources de données fiables et d'outils de calcul sophistiqués. Il donne accès à des années typiques et à des séries chronologiques historiques. Ainsi qu'il permet d'accéder à des séries chronologiques historiques d'irradiation, de température, d'humidité, de précipitations et de vent. La nouvelle archive contient des données horaires depuis 2010 et est constamment mise à jour. Grâce à cette fonctionnalité, Meteonorm offre désormais l'accès à toutes les informations météorologiques pertinentes nécessaires à la planification de l'application solaire telle que PVsyst [47]

B. Utilisation du logiciel Meteonorm 8.0

On commence par sélectionner et définir la localisation géographique du site utilisé dans cette étude, qui s'agit de Bordj albaal, Wilaya de Chlef (voir carte si dessous).

Selection de	Лар	- 🗆 X
Sélectio	Types de site	
	Stations météorologiques	Messadia
	Stations météorologiques sans rayonnement global	
	O Site de Design Reference Year	Guetta
borj el baal	Villes	AND REAL STREAM
Défini par l'u	I Sites définis par l'utilisateur	Douar Tamiste
	○ 🗹 Batch mode locations	
	Agrandir la région	Balara Dechria
	36,3027 "N Lat 0,8260 "E Lon	Bould and
	🔒 Agrandir 🔒 Réduire	
E	G Créer un nouveau site	Djebel Srim
- No	Recherche d'adresse	Thanine
te l	P	Dahra
See		Sidi Moussa El Anita
		Longing

Figure III.1 : Localisation géographique de site d'étude dans Meteonorm 8.

Ensuite, on spécifie un angle d'inclinaison adapté à notre site, qui est d'environ 30°, et on définit les paramètres pour la période temporelle souhaitée, comme une année spécifique ou une plage d'années.

	🏓 Meteonorm v8.2.0
	Fichier Sites Outils Aide
Général	Séléction des sites
Correction des mesures de rayonnement global	
 Employer les données corrigées du rayonnement global Employer les données originales (effets d'horizon inclus) 	Modifications & importation des données
Valable uniquement pour des stations météo avec des horizons hauts.	Paramètres de calcul
Site spécifique	
Orientation du plan	Paramètres de calcul
Azimut 0 0	Période Scénario pour les périodes futures
Albedo	O Historique RCP 2.6 2020
Automatique Utilisateur 0,2	Contemporain RCP 4.5 Futur
Horizon Turbidité atmosphérique	1996-2015 pour le rayonnement et 2000-2019 pour les autres paramètres (si disponibles) urbaine)
Aucun Interpolée Itilisateur Utilisateur	Climate-fit.city KCP 8.5 (sites avec données de chaleur urbaine)
Éditer l'horizon	
	🗧 Retour 🛛 🌒 Paramètres avancés
Suivant =	

Figure III.2 : Définition d'inclinaison et plage d'années

En dernier on choisi le format de sortie des données météorologiques générées par Meteonorm. Cela implique de sélectionner le format de fichier correspondant à PVsyst. Une fois que nous avons sélectionné le format approprié, nous pouvons exporter les données pour les utiliser dans notre projet PVsyst.

Formats de sortie			Resultats et ex		
Meteonorm Standard Meteo Standard minute Standard minute Science Spectral / UV Standard opt.	Simulation bâtiment TRNSYS CH Meteo HELIOS-PC DOE Suncode Match is a 380/1 LESOSAI EnergyPlus (epw) DYNBIL WIFI Passive/WaVE PHEPA 8 PIEiades/Comfie is 2028	PV Polysun PVSOL PVSyst PVS Meteo matrix (TISO) PVScout Solinivest SAM	borj el baal Défini par l'utilisateur	36,3*N / 0,8*E, 555 m	
	WUFI / WAC PHLuft IDA ICE IBK-CCM		teonor		

Figure III.3 : Définir format de sortie et exporter les résultats.

C. Résultats et données météorologiques

Avec Meteonorm 8.0, on a obtenu des résultats précis et détaillés qui montrent le rayonnement solaire de la région étudiée et les précipitations sont également bien documentées, avec des informations sur les quantités et les fréquences. De plus, les heures d'ensoleillement ont été minutieusement calculées, fournissant des données cruciales pour notre dimensionnement et le projet de simulation PVsyst, comme indiqué dans les figures suivantes :

C.1 Rayonnement mensuel

Figure III.4 : Schéma du rayonnement global.

C.2 Rayonnement global journalier

Figure III.5 : Schéma du rayonnement global journalier.

C.3 Température mensuelle

Figure III.6 : Schéma de la température mensuel.

C.4 Température journalière

Figure III.7 : Schéma de la température journalière.

C.5 Précipitation

Figure III.8 : Schéma de la précipitation.

C.6 Durée d'insolation

Nous avons déjà utilisé les données de la durée d'insolation dans la (Figure II.15).

C.7 Tableau de données récapitulatives

	Gh kWh/m²	Dh kWh/m²	Bn kWh/m²	Ta °C	Td °C	FF m/s	
Janvier	80	33	117	9,9	5,3	2,5	
Février	96	37	124	10,6	5,3	2,9	
Mars	145	54	156	13,6	6,9	3,1	
Avril	171	73	154	16,3	8,9	3,2	
Mai	202	77	185	20,6	10,8	3,3	
Juin	218	80	200	26,1	12,7	3,4	
Juillet	219	79	205	29,7	14,5	3,2	
Août	201	71	191	29,4	15,1	3,1	
Septembre	153	57	157	24,8	14,2	2,9	
Octobre	121	44	149	20,8	11,7	2,4	-
Novembre	80	33	107	14,1	8,5	2,4	
Décembre	71	30	107	11,1	6,4	2,3	
Année	1754	668	1851	18.9	10	2.9	

Figure III.9 : Tableau de données récapitulatives de Bordj albaal.

- H_Gh : Irradiation du rayonnement global horizontal
- H_Dh : Irradiation du rayonnement diffus horizontal
- Ta : Température de l'air
- FF : Vitesse du vent
- Bn : l'intensité du rayonnement solaire direct
- Td : La température du point de rosée

III.2 Présentation du logiciel PVsyst 7.3

PVsyst est un logiciel de simulation et d'analyse de systèmes photovoltaïques (PV) conçu pour les ingénieurs, les chercheurs et les professionnels de l'énergie solaire. Il offre une
gamme d'outils pour la conception, le dimensionnement et l'analyse de la performance des systèmes PV. Ces outils permettent d'obtenir diverses informations telles que la production d'énergie, l'irradiation solaire, le coût de l'installation, la surface nécessaire et la production annuelle d'énergie [48]. PVsyst est adapté aussi bien pour des projets de petite taille résidentiels que pour des grandes installations solaires commerciales et industrielles.

A. Interface du logiciel

Le logiciel comprend principalement deux modes de fonctionnement. Le premier est une application de « pré-dimensionnement » disponible comme une option dans une barre des tâches au-dessus de l'interface avec d'autres options, assez simple à prendre en main et accessible au néophyte. Le deuxième permet une étude beaucoup plus approfondie et prend en compte beaucoup plus de paramètre. De plus il se base sur du matériel concret pour ses calculs, contrairement au premier mode qui effectue ses calculs pour un cas très général.

Figure III.10 : Interface du logiciel PVsyst 7.3.

Lors de l'ouverture de PVsyst, on accède à la page principale(figure III.10), Cela donne accès aux quatre parties principales du programme [49] :

• Conception et simulation de projet : Partie principale du logiciel, elle est utilisée pour l'étude complète d'un projet. Elle implique le choix des données météorologiques, la conception du système, les études d'ombrage, la détermination des pertes et l'évaluation économique. La simulation est réalisée sur une année complète par tranche horaire et fournit un rapport complet, ainsi que de nombreux résultats supplémentaires.

• Projets récents : Recherche et modifications rapides de vos projets récents.

• Documentation : Aide dans la réalisation de vos différentes simulations grâce aux tutoriels PDF, vidéos et d'une FAQ.

• Espace de travail de l'utilisateur Pvsyst : Bibliothèque de toutes les données créées par l'utilisateur et l'emplacement peut être modifié par l'utilisateur.

On va utiliser le deuxième mode « conception de projet » pour une étude plus détaillée, en fonction de nos paramètres. Ce mode contient 3 différents types d'installations solaires et des utilitaires d'aide que nous allons identifier comme suit :

A.1 Couplé au réseau

Un système "on-grid" ou "connecté au réseau" est un système solaire photovoltaïque qui est connecté au réseau électrique public. Il comprend l'autoconsommation, où l'énergie solaire produite est utilisée localement, la production totale, qui injecte toute l'énergie dans le réseau pour la vente, et les installations hybrides, qui combinent les deux selon les besoins.

A.2 Isolé avec batteries

Le mode isolé avec batterie dans PVsyst permet de planifier et d'optimiser des systèmes photovoltaïques autonomes, conçus pour fonctionner indépendamment du réseau électrique public. Il est spécifiquement conçu pour les installations hors réseau, généralement situées dans des régions éloignées ou isolées où l'électricité est limitée. La capacité de stockage de la batterie est intégrée dans ce mode pour garantir un approvisionnement continu en électricité, même en l'absence de soleil.

A.3 Pompage

L'option "pompage" dans PVsyst permet de simuler et d'optimiser des systèmes photovoltaïques utilisés pour le pompage d'eau, généralement dans des contextes d'irrigation agricole ou d'approvisionnement en eau potable dans les zones rurales.

A.4 Bases de données

Bases de données contiennent des informations essentielles sur les composants photovoltaïques (modules, onduleurs, etc.) et les données météorologiques nécessaires pour simuler et analyser les performances des systèmes PV, et permettent de les modifier.

92

A.5 Outils

Permet d'utiliser des outils du programme sans pour autant créer un projet complet [34].

B. Localisation géographique du site d'étude

Notre site d'étude pour cette partie de la simulation est Bordj albaal, qui n'est pas défini dans la base de données du logiciel PVsyst. Dans ce cas, nous allons le définir et l'ajouter à l'aide du logiciel déjà utilisé, à savoir Meteonorm 8, en suivant les étapes suivantes :

• Etape 1 : on clique sur « bases de données » dans l'interface principale qui nous donne différentes possibilités, puis on choisit « sites géographiques » pour avoir accès aux sites disponibles sur PVsyst.

• Etape 2 : Notre site n'existe pas dans la base de donné du logiciel sauf Alger et Tamanrasset existant pour l'Algérie, il faut donc cliquer sur « nouveau » pour la crée.

• Etape3 : On introduit les informations, comme le nom de notre site à ajouter dans Meteonorm, ainsi que les coordonnées géographiques, puis on appuie sur « importer ». Ensuite, le tableau des données météorologiques(Figure III.11 ci-dessous) seront auto-remplis afin de sauvegarder cette nouvelle localisation.

lieu		
Nom du site	Borj el baal Obtenir depuis le coordonnées	5
Pays	Algérie Vir carte	
Coordonnées	Géographiques	Importation météo
	Trajectojnes du colei	Meteonorm 8.1
		O NASA-SSE
	Décimale Deg. Min. Sec.	O PVGIS TMY Version 5.2
Latitude	36.3030 [9] 36 18 10 (+ = Nord, - = Hémisph. Sud)	O NREL / NSRDB TMY
Longitude	0.8260 [9] 0 49 33 (+ = Est, - = Ouest de Greenwich)	 Solcast TMY
Altitude	555 M au-dessus du niv. de la mer	O SolarAnywhere® TGY
Fus. horaire	0.0 Correspondant à une différence moyenne Temps Légal - Temps Solaire = 0h - 2m	Importer
	Obtenir depuis le nom	

Figure III.11 : Etape d'ajouter un nouveau site dans PVsyst à partir de Meteonorm.

III.3 Simulation de la ferme rurale

Dans ce projet, nous avons présenté une installation PV autonome ou isolée pour alimenter une partie de notre ferme rurale, à savoir une maison et un poulailler, en prenant en compte le même bilan de consommation et toutes les données présentées précédemment au chapitre II.

nception de projet et simulation	7 <u></u>	
我 Couplé au réseau	Isolé avec batteries	T Pompage
litaires		
8	*	(B)
Denne de denn fan	Quille	Doppóor moruróor

Figure III.12 : Première étape pour un projet PVsyst d'installation PV autonome.

Pour cela, nous allons créer un nouveau projet en choisissant l'option « isolé avec batteries »(Figure III.12 ci-dessus) et en suivant les étapes suivantes :

A. Choix du nom et localisation

Après avoir accédé au projet « isolé avec batteries », nous aurons une nouvelle interface pour notre projet. La première chose à faire est d'entrer le nom du projet et la localisation du site d'étude, qui est déjà trouvée dans la base de données. Ensuite, nous sauvegardons ce projet pour pouvoir procéder à la création de la première variante.

Figure III.13 : Etape de choix du nom et de la localisation du projet.

Nous remarquerons qu'au début, il y a 2 boutons marqués en rouge : « Orientation » et « Besoins de l'utilisateur ». La couleur rouge signifie que cette variante du projet n'est pas encore prête pour la simulation et des données supplémentaires sont nécessaires [50].

B. Orientation

On choisira ici l'orientation (inclinaison et azimut du panneau). Néanmoins ici on pourra choisir entre différent types d'ajustement en plus de ceux déjà vus [48] :

- Un panneau fixe
- Un panneau possédant deux inclinaisons : une pour l'hiver et une pour l'été
- Un panneau suivant le soleil sur les deux axes, il faudra alors déterminer les butées

• Un panneau qui change seulement son azimut sur un axe incliné, on règlera aussi les butées

• Un panneau qui change seulement son inclinaison, on choisira l'azimut et les buttées

• Deux panneaux avec des positions et des tailles différentes, ou plusieurs panneaux posés sur le sol ou contre un mur.

On choisit le type de champ avec un plan incliné fixe .c'est l'inclinaison optimale de 30° donnée par le logiciel PVsyst. En dehors de cette dernière le rendement diminue [48]

Type de champ Plan incl	iné fixe 🗸	3			
Paramètres du champ	Inclin. 30°		Azimut 0°		
Azimut 0.0 0 0		Ouest		T	Est
		_	Sud		
Optimisation rapide			Sud		
Optimisation rapide Optimisation par rapport à O tradiation annuelle O Eté (Av-Sept)	16		1.6		
Optimisation rapide Optimisation par rapport à O Irradiation annuelle D Eté (Avr-Sept) O Hiver (Oct-Mars)	1.6 Hiver		1.6		
Optimisation rapide Optimisation par rapport à O tradiation annuelle O Eté (Avr-Sept) O Hiver (Oct-Mars) Météo incidente hiver	1.6 Hiver 1.4		1.6	• • • • •	
Optimisation rapide Optimisation par rapport à O Irradiation annuele O Eté (Avr-Sept) O Hiver (Oct-Marg) Hétéo incidente hiver Facteur de Transposition 1.44	1.6 1.4 1.2 1.2 1.0 ETranspos.= 1.44		1.4 1.4 1.2 1.0		
Optimisation rapide Optimisation par rapport à O Irradiation annuelle Irradiation annuelle Eté (Avr-Sept) Irradiation annuelle International (Avr-Sept) International (Avr-Sept) International (Avr-Sept) International (Avr-Sept) Preto par rapport à l'optimum 1.44 Perte par rapport à l'optimum -7.5 %	1.6 1.4 1.2 1.0 FTranspos.= 1.44 0.8 Fette/Opt= -7.5		1.6 1.4 1.2 1.0 0.8	·····	

Figure III.14 : Choix d'orientation.

C. Détermination des besoins utilisateur

Dans cette étape, Nous allons utiliser l'interface de définition des besoins énergétiques de l'utilisateur par cliquer sur l'onglet « Besoins de l'utilisateur ».Une fois ce menu ouvert, on commence à compléter le tableau de la consommation quotidienne pour une année par définir[50]:

- Le nombre d'appareils correspondant à la désignation
- La puissance unitaire en Watts
- Le temps de fonctionnement quotidien

	Définition des	usages dom	estiques j	ournalie	rs pour l	année.			
mmation	Distribution horaire								
nsomm	ations journalières								-
ombre	Appareil	Puissar	ice	Util. jou	ırn.	Distrib. horaire	Daily ene	rgy	
5 0	ampes (LED ou fluo)	20	W/lampe	6.0	h/jour	OK	3000 V	Vh	
	TV + Démo	120	W/app	6.0	h/jour	OK	1440 V	Vh	
	PC	65	W/app	4.0	h/jour	OK	260 \	Vh	
	Réfrigérateur	7.20	kWh/jour	24.0]	OK	7200 V	Vh	
	Machines à laver	1000.0	W moy.	1.0	h/jour	OK	1000 \	Vh	
	couveuse des œufs	300	W/app	24.0	h/jour	OK	7200 V	Vh	
	ventilateur du poulailler	1100	W/app	6.0	h/jour	OK	13200 V	Vh	
	Consomm. de veille	20	W tot	24 h/j	our		480 V	Vh	
0	T-6			Energie	journalièr	e totale	33780	Wh/jour	
	Into apparens			É	nergie me	ensuelle	1013.4	cWh/mois	
finition	consommation par	Utilis. Week	-end ou sei	maine					
Années	2	Utilisation s	eulement per	ndant					

Figure III.15 : Définition des besoins énergétiques de l'utilisateur.

Ensuite, nous devons saisir les plages horaires de fonctionnement de ces appareils par utiliser l'onglet « distribution horaire ».Chaque cadran est composé de 48 sections, et chaque section représente 30 minutes de la journée. Pour définir un horaire ou une plage horaire, nous pouvons le faire en cliquant le bouton gauche de la souris. Pour supprimer un horaire ou une plage horaire, nous plage horaire en cliquant le bouton droit de notre souris [50].

Définition des u	sages domestiques journaliers no	ur l'année		couveuse des œufs
Consommation Distribution boraire	soges comesciples journales po			128
Lampes (LD out fluo) 04 04 04 04 04 04 04 04 04 04	H 15H 16H 16H 19H 19H 19H 19H 19H 19H 19H 19	Consomnation Journ. glob	Apparells definis- Vor d'autres c > bate	9H 15H 6H Total 24 H 15H 3H 0H
OH OH OH OH OH OH		(Maintaintaintaintaintaintaintaintaintaint	2 15 18 21 24	Ventilateur du poulailler 12H 9H 6H Total 6 H 3H
Modèle 📂 Charger 🔡 Sa	uver Autre profil	🗙 Annuler	Activer Win	он

Figure III.16 : Distribution horaires des besoins énergétiques.

D. Définir le système

Une fois terminée la définition de l'orientation du système et de nos besoins d'utilisateur, l'onglet « Système » devient rouge, ce qui signifie que nous pouvons le cliquer pour définir notre système électrique. Dans l'onglet « système », nous devons définir [50]:

- Les caractéristiques du pack de batteries.
- Les caractéristiques du champ photovoltaïque

• Les caractéristiques du régulateur de charge/décharge

On peut même ajouter un système de générateur optionnel via l'onglet "Appoint". Mais tout d'abord, il faut remplir l'espace « Pré-dimensionnement » en haut de notre interfacepar des informations principales telles que PLOL, l'autonomie et la tension des batteries.

Péfinition	ı d'un systèm	e isolé avec batter	ies, Variante "po	ulailler	et maison memoire", Varia	nt "poulailler et maison memoire"		
Besoins jou	r. moyens	Déf. la PLOL ac	ceptable	5.) () % ()	Tension batterie (et utilis.)	48 🗘 V	0
33.8 kW	h/jour	Autonomie requ	uise	3.) 🗯 jour(s) 🕜	Capacité conseillée	2484 Ah	
		Pré-dimens.	détaillé			Puissance PV conseillée	10323 Wc ((nom.)
Stockage	Champ PV	Appoint Schéma	a simplifié					
-Nom et	orientation du	u sous-champ			-Aide au dimensionn	ement		
Nom	Champ PV				O Pas de prédim.	Entrez Pnom désirée	29.4	kWc
Orient.	Plan inclin	é fixe	Inclinaison Azimut	30° 0°	Redimens.	ou surface disponible(153	m²

Figure III.17 : Première étape à faire dans l'interface du « système ».

PLOL (probability loss of load) perte de charge :Cette valeur est la probabilité que les besoins de l'utilisateur ne peuvent pas être fournis (à savoir la fraction de temps lorsque la batterie est déconnectée en raison de la sécurité du régulateur « charge faible»). Il peut être compris comme le complément de la « fraction solaire » (bien qu'elle soit décrite en termes de temps plutôt que de l'énergie) [34].Dans PVsyst, cela est réglé à 5 % comme valeur standard.

L'autonomie : C'est le nombre de jours consécutifs qu'en absence du soleil, le système doit être capable pour subvenir aux besoins énergétique [34] que nous avons définis, soit 3 jours d'autonomie comme mentionné dans le chapitre II.

Tension des batteries :'est déjà déterminée de 48V. (Selon Tableau II.4)

D.1 Caractéristiques du pack de batteries

En sélectionnant un modèle de batterie parmi les modèles des batteries et leurs caractéristiques proposées par le logiciel selon la base des données. Le programme proposera le nombre de batteries en série et en parallèle selon notre choix. (Figure III.18 ci-dessous montre notre batterie sélectionnée et le branchement en série, parallèle).

On a choisir les batteries de type ROLLS 12 CS- 11 PS avec une capacité de 296 Ah et tension de 12 V car ce choix a la plus grande capacité trouvé parmi les batteries de 12 V disponible dans la base de données de PVsyst 7.3

Flocedure	Les suggestions de pré-dimensionnement sont basées	sur la météo mensuelle, et les besoins de l'	utilisateur
Pré-dimensionnement	Définissez les conditions de pré-dimensionnement (PLC	L, autonomie, tension batterie)	
Stockage	Définissez le pack de batteries (les cases défaut appro	chent les suggestions du pré-dimensionner	ment)
 Conception champ PV 	Définissez le champ PV (Module PV et mode de contrôle	e). Conseil : commencez avec un régulateur	r universel !
Appoint	Définissez un éventuel groupe électrogène		
)éfinissez le pack de ba	tteries		_
ier les hatteries selon 🔘			
olis	12 V 296 An PD Sealed Plates 12-C	5-11P5 ·	Q Ouvrir
o-acide	<u>~</u>	Tension du pack batteries	48 V
4 🔅 🔽 batteries er	série	Capacité globale	2368 Ah
8 1° 🛛 hattarian ar	Nombre de batteries 32	Energie stockée (80 % DOD)	90.9 kWh
batteries er	Nombre d'éléments 192	Poids total	4288 kg
100.0 % Etat d'use	re initial (nb. de cycles)	Nbre de cycles à 80 % DOD	1984
100.0 0 % Etat d'usu	ure initial (statique)	Energie totale stockée durant la vie de la batterie	200 MW
empérature batterie e	n opération		
Mode tempér. Fixée	(local tempéré) V		
Température fixée 20	PC .		
	~		

Figure III.18 : Définir les caractéristiques de stockage.

D.2 Les caractéristiques du champ photovoltaïque

Le logiciel a déjà calculé et déterminé la puissance PV conseillée dans l'outil de « Prédimensionnement »(voir la Figure III.17). Maintenant, nous devons choisir l'un des nombreux modèles de panneaux solaires disponibles dans cette version du logiciel, qui prendra les caractéristiques de notre choix et nous fournira des informations telles que le nombre total de panneaux nécessaires et le nombre en série et en parallèle(Figure III.19).

Nous avons choisi des panneaux solaires de la marque « SunPower », l'une des meilleures marques disponibles sur le marché mondial des panneaux solaires. Nous avons sélectionné cette marque en profitant de l'avantage offert par PVsyst 7.3 qui propose de nouveaux modèles depuis 2020 avec une puissance crête élevée pour cette marque.

Tous les modules \sim	T	ri modules par	O Puissa	ince () Techno	ologie		_
SunPower 🗸 🗸	470 Wp 65V	Si-mono	SPR-X2	1-470-COM			Depuis 20.	Q Ouvr
	Dimens. c	des tensions :	Vmpp (60°C) Vco (-10°C)	68.4 V 99.1 V				
Choisissez le mode de	régulation et le	régulateur						-
2 Régulateur univer	sel Generic		- Conver	usseur de pu	uissance i	MPP1		
Mode d'onération			Courants	s max. de ch	arge - dé	charge		
						and the local data and t		
	MPPT 1000 W	48 V	237 A	64 A	Univers	al controller with MF	PPT conve	🗸 📄 🗁 Ouvr
Couplage direct	MPPT 1000 W	48 V de fonctionne	237 A	64 A	Univers	al controller with MF	PPT conve	Ouvr
Couplage direct Convertisseur MPPT Convertisseur DC-DC	MPPT 1000 W Les paramètres automatiquemen	48 V de fonctionne nt ajustés selo	237 A ment du régula n les propriété	64 A ateur univers is du système	Univers sel seront e.	al controller with MF	PPT conve	- Ouvr
Couplage direct Convertisseur MPPT Convertisseur DC-DC	MPPT 1000 W Les paramètres automatiquemen	48 V de fonctionne nt ajustés selo	237 A ment du régula n les propriété	64 A ateur univers is du système	Univers sel seront e.	al controller with MF	PPT conve	Ouvr
Couplage direct Convertisseur MPPT Convertisseur DC-DC	MPPT 1000 W Les paramètres automatiquemen	48 V de fonctionne nt ajustés selo	237 A ment du régula n les propriété	64 A ateur univers is du système onement:	Univers sel seront e.	al controller with MF	PPT conve	Ouvr
Couplage direct Convertisseur MPPT Convertisseur DC-DC Conception champ PV Nombre de modules	MPPT 1000 W Les paramètres d automatiquemen et chaînes	48 V de fonctionne nt ajustés selo Co	237 A ment du régula n les propriété ind. de fonctio	64 A ateur univers s du système nnement:	Univers sel seront e.	al controller with MF	PPT conve	Ouvr
Couplage direct Convertisseur MPPT Convertisseur DC-DC Conception champ PV Nombre de modules	MPPT 1000 W Les paramètres i automatiquemen et chaînes doit être:	48 V de fonctionne t ajustés selo Co Vm rainte	237 A ment du régula n les propriété and, de fonctio app (60°C)	64 A ateur univers s du système nnement: 137 V 155 V	Univers sel seront e.	al controller with MF	PPT conve	V Duvr
Couplage direct Convertisseur MPPT Convertisseur DC-DC Conception champ PV Nombre de modules Mod. en série	MPPT 1000 W Les paramètres i automatiquemen et chaînes doit être:	48 V de fonctionne t ajustés selo Co Vir rainte Vir Vo	237 A ment du régula n les propriété and, de fonctio npp (60°C) npp (20°C) o (-10°C)	64 A ateur univers is du système nnement: 137 V 155 V 198 V	Univers sel seront e.	al controller with MP	PPT conve	V Duvr
Couplage direct Convertisseur MPPT Convertisseur DC-DC Conception champ PV Nombre de modules Mod. en série 2 Nb. chaînes 11	Imppt 1000 W Les paramètres automatiquemen et chaînes doit être: Ølit être: Pas de contr Ventre 26 et	48 V de fonctionne nt ajustés selo Co vr rainte Vr Vr va S8	237 A ment du régula n les propriété ind. de fonctio ipp (60°C) ipp (20°C) o (-10°C)	64 A ateur univers is du systèm nnement: 137 V 155 V 198 V	Univers sel seront e.	al controller with MF	PPT conve	2 Duvr
Couplage direct Convertisseur MPPT Convertisseur DC-DC Conception champ PV Nombre de modules Mod. en série 2 Nb. chaînes	MPPT 1000 W Les paramètres automatiquemen et chaînes doit être: ✓ Pas de conto ♀ entre 26 et	48 V de fonctionne nt ajustés selo Vrr ainte 38 Irr Irr	237 A ment du régula n les propriété ind. de fonctio ipp (60°C) ipp (20°C) o (-10°C) adiance plan no (60°C)	64 A ateur univers is du système nnement: 137 V 155 V 198 V 1000 68.0 A	Univers sel seront e. W/m ²	al controller with MF	PPT conve	9.6 kW
Coupleg direct Convertisseur MPPT Convertisseur DC-DC Conception champ PV Nombre de modules Mod. en série Nb. chaînes	MPPT 1000 W Les paramètres i automatiquemen et chaînes doit être: ✓ Pas de conto ♀ entre 26 et	48 V de fonctionne ti ajustés selo Vir rainte 38 (?) Irr Isc	237 A ment du régula n les propriété and. de fonctio npp (60°C) npp (20°C) o (-10°C) adiance plan pp (60°C) : (60°C)	64 A ateur univers is du système nnement: 137 V 155 V 198 V 1000 68.0 A 72.1 A	Univers sel seront e. W/m ²	al controller with MF	PPT conve ♪	9.6 kW

Figure III.19 : Choix des paramètres du champ PV et régulateur.

Choix du régulateur :La stratégie exacte du régulateur n'a pas d'importance. Pour se débarrasser des contraintes de contrôle, PVsyst introduit un **contrôleur universel** « **générique** » à usage général, pour les 3 différentes stratégies : Couplage direct, convertisseur MPPT ou convertisseur DC-DC [50]. Il est conseillé de choisir un « convertisseur MPPT » comme nous l'avons déjà fait, car Le convertisseur MPPT est un système de conversion de puissance muni d'un algorithme de contrôle approprié permettant d'extraire le maximum de puissance que le GPV peut fournir [34].

Schéma simplifie : le logiciel nous fournit un schéma de configuration pour un système isolé, comme illustré dans la figure suivante :

Figure III.20 : Configuration typique d'un système isolé par PVsyst 7.3.

E. Lancer la simulation

Apres avoir un bouton de « système » en vert, on peut Passer sur le bouton « Pertes détaillées » pour la définition de toutes les pertes du système, qui ont été définis à des valeurs par défaut raisonnables pour nos premières simulations [34] (Figure III.21).

and the second		a hill da um a		"		
arameu es diermiques	rei tes onmiques	Qualite des modules - LID - P	*iisinatch	Per le d'encrassement	Fer les IAM	correction spectrale
Fact. de pertes the	ermiques du char	np	Facte	e : ur NOCT équivalent—		
Fact. de pertes thermi	ques	U = Uc + Uv * Vit.vent	NOCT (souven	Nominal Operating Cell te t spécifié par les fabricar	emperature) e its pour le mor	est dule
Fact. de pertes consta	int Uc	20.0 W/m²K	facteur	U, qui n'a pas beaucoup	de sens lorsq	ju'il
Fact.selon vitesse du v	/ent Uv	0.0 W/m²K m/s	est app	lique au champ en foncti	onnement.	
Valeurs par défau	ut selon le monta	ge	beauc	oup de confusion ave	c les champ	ine os!
Capteurs "nus" av	/ec circulation d'air	tout autour				
Semi-intégré avec	: lame d'air		-			_
			1 B			

Figure III.21 : Paramètres des pertes.

Pour des paramètres plus spécifiques et avancés, il est également possible de définir les « ombrages proches » et le profil « d'horizon » qui est une opération très simple à réaliser avec l'outil graphique de PVsyst. L'horizon se présente sous la forme d'une ligne brisée superposée sur le diagramme de la trajectoire du soleil, pouvant contenir un nombre quelconque de points de hauteur / azimut [34].

Figure III.22 : Horizon du bordj albaal.

Maintenant sur le tableau de bord du projet, tous les boutons sont verts et le bouton « Simulation » est activé, et nous pouvons cliquer dessus [50] pour lancer notre simulation pour ce projet d'étude isolé avec batteries et avoir nos résultats pour la maison et le poulailler.

	an la construction	incommunicate (1990 to tail) out and in	Paramà	tres de simulation			
Fichier Météo	borjal baal JAN 61 SNUMET	Meteonorm 8.1 (1996-2010), Sat= Prêt pour la simulati	% synthébique 0.1♥	Maison et poulailler pour ferme rurale	Champ PV		
			Site	Borj al baal	Modules PV SP	R-X21-470-COM	Batterie:
			Type syst	ème Isolé avec batteries	Puissance nominale	10.3 kWc	Tension ba
Variante	t Nouveau 💾 S	Sauver 🌒 Importer 🏢 Supprimer 🛛 😡 G	' Simulation	01/01 au 31/12	Tension MPP	76.6 V	Capacité t
Nº de Variante	· noulailler et maison memoire		(Section)	and the second second			
N° de Variante VCO	: poulailler et maison memoire	Simulation	Progre	ssion, temps écoulé : 0 Sec. Écute la simulation par pas de 1 heur	e		
N° de Variante VCO Paramètres prindpaux Orientation Besoins utilisateur	: poulailer et maison menore Optionnel Prinzes proches	-Simulation Lancer la simulation	Progre	ssion, temps écoulé : 0 Sec. écute la simulation par pas de 1 heur	ė		
N° de Variante (70) Paramètres principaux © Orientation © Besons utilisateur © Système	: poLaifer et mason menore -Optornet	Simulation Simulation Simulation Simulation Simulation exercise	Progre Ex Sin	ssion, temps écoulé : 0 Sec. Écute la simulation par pas de 1 heur ulation 01/03/90	e		1
N° de Variante V.O. Paramètres principaux 	: poJalier et mason menore Coptionnel Perform From Coptionnel Co	-Simulation Lancer la simulation Simulation avancée Report	Progre Ex Sin	ssion, temps écoulé : 0 Sec. écute la simulation par pas de 1 heur ulation 01/03/90	e		,]

Figure III.23 : Lancement de la simulation.

F. Résultats et discussion

La simulation nous fournit tous les résultats sous forme de tableaux et de figures, ainsi qu'un rapport général sur notre système. Nous commençons par l'indice de performance :

Indice de performance (PR) et Fraction solaire (SF)

Figure III.24 : Schéma indice de performance et fraction solaire.

Selon Figure III.24 l'indice de performance (Performance Ration) est le rendement global du système qui a une valeur de 59.8%. La valeur typique de PR est 0,65 à 0,9 [34]. Alors, notre système fonctionne bien, surtout pendant les mois d'hiver, mais cet indice faible pendant les mois d'été représenté de grandes pertes (énergie non utilisée) durant cette période à cause du surplus d'énergie fourni par notre champ PV par rapport à nos besoins.

D'autre part, on a une fraction solaire de 99.2%, cela signifie que presque toute l'énergie requise est fournie par le système solaire tout au long de l'année.

Figure III.25 : Energie incidente de référence dans le plan des capteurs solaires.

On remarque que l'énergie incidente moyenne est 5.41 KWh/m²/j pendant toute l'année, et la plus basse valeur en janvier et décembre ou l'ensoleillement est faible. Mais elle augmente progressivement à partir de février, atteignant un pic en juin et juillet avec des valeurs proches de 7 KWh/m²/jour.

Figure III.26 : Facteurs de la production et pertes.

La figure ci-dessus représente les facteurs de production et de pertes en même temps pour permettre une comparaison. On remarque une grande quantité d'énergie inutilisée pendant les mois d'été, ce qui augmente les pertes par rapport à l'énergie demandée pendant cette période.

kWI Janvier 78 Février 94 Mars 14 Avril 17 Mai 19	h/m ² kWh 8.9 12 4.0 130 2.6 168 1.3 175	v/m² kW 1.1 115 1.6 124 1.9 157	kWh 50 34.7 12 299.3 '2 439.3	kWh 0.00 0.00 0.00	kWh 1047 946 1047	kWh 1047 946	ratio 1.000 1.000
Janvier 78 Février 94 Mars 14 Avril 17 Mai 19	8.9 121 4.0 130 2.6 168 1.3 175	1.1 110 1.6 124 1.9 157 1.8 166	50 34.7 12 299.3 '2 439.3	0.00 0.00 0.00	1047 946 1047	1047 946	1.000
Février 94 Mars 14 Avril 17 Mai 19	4.0 130 2.6 168 1.3 179	0.6 124 3.9 157	12 299.3 72 439.3	0.00	946 1047	946	1.000
Mars 14 Avril 17 Mai 19	2.6 168 1.3 179	3.9 157	439.3	0.00	1047	1047	1 000
Avril 17 Mai 19	1.3 179	18 166	1020 0000 0000 0000 0000 0000 0000 0000		10.41	1047	1.000
Mai 19		1.0	603.6	0.00	1013	1013	1.000
	7.1 185	5.0 169	596.8	0.00	1047	1047	1.000
Juin 21	6.1 196	3.8 177	707.0	0.00	1013	1013	1.000
Juillet 21	8.1 203	3.1 179	698.7	0.00	1047	1047	1.000
Août 20	0.8 202	2.5 178	692.3	0.00	1047	1047	1.000
Septembre 15	1.9 170	0.9 153	466.6	0.00	1013	1013	1.000
Octobre 11	9.0 154	1.3 140	317.5	0.00	1047	1047	1.000
Novembre 79	9.1 113	3.9 106	67.6	0.00	1013	1013	1.000
Décembre 69	9.1 109).5 103	31 14.2	96.20	951	1047	0.908
Année 173	38.0 193	6.6 177	19 4937.6	96.20	12233	12330	0.992

EUnused Énergie inutilisée (batterie pleine) E_Miss Energie manquante

Figure III.27 : Bilans et résultats principaux.

Le mois de décembre est le moins ensoleillé, ce qui entraîne un léger déficit par rapport aux besoins énergétiques fournis. Contrairement à l'énergie excédentaire pendant les mois d'été en raison d'une irradiation solaire élevée.

La Figure III.28 ci-dessous représente toutes les pertes dans notre simulation, en commençant par les pertes au niveau de l'irradiation pour l'incident global, puis passant aux pertes de nos panneaux. Ensuite, le diagramme nous montre les pertes dans le régulateur et les batteries jusqu'à atteindre l'utilisateur.

Diagramme des pertes pour "poulailler et maison memoire" - année

Figure III.28 : Diagramme des pertes pour cette simulation.

La figure suivante conclut notre besoin d'utilisateur déjà prédéterminé (Figure III.15), avec une consommation journalière totale de 33,8 kWh/jour, et l'on remarque un pic de consommation d'électricité entre 12h et 16h.

Figure III.29 : Besoins de l'utilisateur et distribution horaire.

Dernièrement, la simulation nous a fourni un rapport général (Figure III.30) incluant les données de notre étude ainsi que le reste des différents graphiques :

	STATE SO	ST			Version 7.
	PVsys	st - Rapp	ort de sim	ulation	
		Systè	eme isolé		
	Projet	Maison et pou	ulailler pour ferme	rurale	
		/ariante: poulaille Système iso Puissance sys Borj al b	er et maison memoli dé avec batteries tème : 10.34 kWc baal - Algérie	e	
	Pro	jet: Maison et po Variante: poulaill	ulailler pour ferme ru er et maison memoire	ırale	
yst V7.3.1 , Simulé le : 6/24 12:35 ; v7.3.1					
		Résum	né du projet		
Site géographique		Situation		Paramètres du proje	et
Borj al baal		Latitude	36.30 °N	Albédo	0.20
Algérie		Longitude	0.83 °E		
		Altitude	555 m		
		Fus. horaire	UTC		
Données météo					
borj al baal					
Meteonorm 8.1 (1996-20	10), Sat=100 % - S	ynthétique			
		– Résumé	é du système		
Système isolé		Système isolé a	avec batteries		
Orientation plan cap	teurs	Besoins de l'ut	ilisateur		
Plan fixe		Consomm. domes	stique		
Inclinaison/Azimut	30 / 0 °	Constants sur l'an	née		
		Moyenne	33.8 kWh/Jour		
nformation système					
Champ PV			Pack de batteries		
Nb. de modules		22 unités	Technologie	Pb-acide, scellée, plaque	es
Pnom total		10.34 kWc	Nombre d'unités		32 unités
			Tension		48 V
			Capacité	23	68 Ah
		– Résumé	des résultats		
Energie disponible	17719 kWh/an	Productible	1714 kWh/kWc/an	Indice perf. PR	59.85 %
Epergie utilisée	12233 kWh/an			Eraction solaire (SE)	99 22 %

104

		Rés	ultats pri	incipaux —			
Production du systèn	ne						
Energie disponible		17719 kWh/an		Indice de performance	e (PR)	59.85	5%
Energie utilisée		12233 kWh/an		Fraction solaire (SF)		99.22	2 %
En excès (inutilisée)		4936 kWh/an					
Peoples per estisfaite		4000 1000		Vieilliegement better	in (Etat d'uni	(COM/I)	
Desoins non satisfaits				vieinissement batter	ie (Etat d ust	ITE (SOW))	
Fraction du temps		0.9 %		SOW cyclage		96.4	1%
Energie manquante		96 kWh/an SOW statique				93.3	3%
				Durée de vie batterie		15.0) ans
		Dara		6 m 6 m 0 m 10			
Système isolé		— Para Système is	metres g	eneraux — oatteries			
Drientation plan capte	urs	1910-000					
Drientation	5.6	Configuratio	on des shed	ls	Modèles u	ıtilisés	
Plan fixe		Pas de scène	e 3D		Transposit	ion	Perez
nclinaison/Azimut	30 / 0 °				Diffus	Perez, Mete	eonorm
					Circumsola	aire sépa	rément
Resoins de l'utilisateu							
Consomm, domestique							
Constants sur l'année							
Noyenne	33.8 kWh/Jour						
- 51 							
2 (27) <u>12</u> 221	0	Caractéristiqu	les du ch	amp de capteurs			
Adule PV				Batterie			
abricant		SunPower		Fabricant		8	Rolls
(Dese de desertes D)/s	SP wet exisisets'	R-X21-470-COM		Modele		Dh asida asal	12-CS-11PS
(Base de donnees PVs	yst originale)	170 14/0		Technologie	0	Pb-acide, scel	lee, plaques
lombro do modulos DV/		470 WC		Nombre a unites	20.0 %		
Iominale (STC)	4	22 unites		Energie stockée	20.0 % 90.9 kWb		
Iodulee	11 Chaine	e v 2 En cário		Caractórietiques du h	anc de hatte	vice	- KITII
ux cond de fonct (50°C	3	DAL ENOUND		Tension	June de Durre	48	V
mpp		9.61 kWc		Capacité nominale		2368	Ah (C10)
Jmpp		141 V		Température		Fixée 20	0°C
mpp		68 A		20			
1 miletare				Coulle de régulatio	. hattada		
Regulateur				Seuils de regulatio	n batterie	Calcul SOC	
echnologie	Convertisseur M	IPPT		Charge	SCION	C = 0.90 / 0.75	
coeff de temp	Convertissed in	-5.0 mV/°C/Élér	n	environ	00	52 9 / 49 5	v
onvertisseur		0.0 1117 0.2.0		Décharge	so	C = 0.20 / 0.45	
fficacité maxi et EURO	97.0 /	95.0 %		environ		46.5 / 48.3	v
wiesenes DV totals							
Iominale (STC)		10 kW/c					
Total		22 modules					
Surface modules		47.6 m ²					
Surface cellule		43.1 m ²					
			Portos ob	3000			
act de nertes thermi	auee	Portos câb	lane DC	p	Porto dia	de série	
empérature modules selo	n l'irradiance	Rés globale	champ	34 mQ	Chute de t	ension	0.7 V
Ic (const)	20.0 W/m²K	Frac. pertes		1.5 % aux STC	Frac. perte	s	0.5 % aux
lv (vent)	0.0 W/m²K/m/s						
erte de qualité modul	le 0.8 %	Pertes de r	nismatch	modules	Perte de	"mismatch"	strings
rac. pertes acteur de perte IAM ffet d'incidence (IAM): Fre	-0.0 % esnel, anti-reflets, n(rac. pertes	AR)=1.290	0.6 % au MPP	rac. perte	rs -	0.1 %
		2 C C	2				
0° 20°	50°	60°	70°	75°	80°	85°	00°
0° 30°	50°	60°	70°	75°	80°	85°	90°

Figure III.30 : Rapport de simulation de première partie.

G. Solutions

En nous basant sur les données et les résultats obtenus à partir des simulations, nous avons constaté un surplus d'énergie durant l'été et un léger déficit au mois de décembre. Par conséquent, nous proposons plusieurs solutions pour remédier à ces problèmes. Tout d'abord, il est recommandé d'incliner les panneaux solaires de manière à favoriser leur efficacité en hiver, même si cela implique une perte de rendement en été. De plus, l'ajout d'appareils tels que des climatiseurs permettrait de profiter de l'excès d'énergie durant l'été. Il serait également judicieux de réduire ou arrêter l'activité du poulailler en décembre pour éviter le déficit énergétique.

Par ailleurs, il est essentiel de choisir des composants à haut rendement et de veiller à une installation et une maintenance de qualité pour minimiser les pertes au maximum. Ces solutions combinées peuvent aider à atteindre un meilleur équilibre entre l'offre et la demande d'énergie tout au long de l'année.

III.4 simulation du système de forage

Dans ce deuxième projet, nous avons présenté un pompage d'eau direct « au fil du soleil » à partir d'un forage (le puits) isoléà l'aide d'un réservoir, pour alimenter une partie de notre ferme rurale, à savoir le puits destiné à l'irrigation et usage domestique. En prenant en compte le même bilan des besoins en eau et toutes les données de notre puits présentées précédemment au chapitre II.

Figure III.31 : Choix de la conception de notre projet.

Pour cela, nous allons créer un nouveau projet en choisissant l'option « pompage » (Figure III.31 ci-dessus) et en suivant les étapes suivantes.

Remarque :On va noter que le choix des paramètres et la définition de certaines étapes sont les mêmes que ceux réalisés dans le premier projet (III.3), en mentionnant l'orientation (Figure III.14), les pertes (Figure III.21) et l'horizon qui ne change pas comme indiqué dans la Figure III.22.

A. Choix du nom et localisation

Après avoir accédé au projet « pompage », nous avons refait les mêmes étapes que pour le premier projet, en donnant un nom à ce nouveau projet et en choisissant le site de cette étude, qui est toujours Bordj Al Baal. Ensuite, nous avons sauvegardé ce projet afin de pouvoir procéder à la création de l'autre variante telle que « orientation » et « besoins d'eau ».

Projet: essai 2_Project.PR. et Site Variante Mé	no utilisateur	
Projet	• Nouveau	🗴 📂 Charger 🔡 Sauver 🖝 Import 🕞 Export 🔯 Paramètres du projet 🥤
Nom du projet	pompage d'un puits-memoire	Nom du
Fichier site	borj al baal_MN81.SIT	Meteonorm 8.1 (1996-2010), Sat=100 % Algérie
Fichier Météo	borj al baal_MN81_SYN.MET	Meteonorm 8.1 (1996-2010), Sat=100 % Synthétique 0 k 🗸
Variante	T Nouveau	Sauver Importer T Supprimer
Variante	Nouveau	a 💾 Sauver 🕼 Importer 🛗 Supprimer 🔯 Gérer
Nº de Variante	VC0 : Nouvelle variante de simulation	
Paramètres principaux—	Optionnel	Simulation
Orientation	Horizon	Lancer la cinulation
Besoins d'eau	Ombrages proches	
Système		🗊 Simulation avancée

Figure III.32 : Interface du projet « pompage ».

B. Besoins d'eau

Apres accéder à l'onglet « besoins d'eau », on trouve une boîte de dialogue « Définitions hydrauliques de pompage », il nous sera demandé de spécifier [51] :

• La profondeur statique : celle-ci peut également être donnée en valeurs saisonnières ou mensuelles, dans le dialogue « Besoins en eau »

• La profondeur maximale de pompage : correspondant au niveau d'aspiration d'entrée. Le système arrêtera la pompe lorsque le niveau dynamique atteindra ce niveau, évitant ainsi un fonctionnement à sec

- La profondeur de la pompe : toujours au-dessous de Hmax
- Le diamètre du trou de forage (en cm)

• Le rabattement spécifique exprimé en [m/m3/h] : il s'agit d'une caractéristique du forage et du sol environnant.

Туре о	de systè	ème Fora	ge vers réservoir			-		
Caractéristiques du forage			Réservoir			Fe	eding lev	•
Niveau statique	-20.0	m	Volume	130.0	m ³			
Rabattement 🕜	-4.65	m/m³/h	Diamètre	5.25	m	Ground	1	
Débit maximum	8.6	m³/b	Hauteur (plein)	6.00	m			
Niveau dynamique minimum	-60.0] m	Altitude d'injection	10.00	m			Static level
Niveau dynamique minimum Niveau pompe	-60.0] m] m	Altitude d'injection	10.00	m	Pum	ping	Static level
Niveau dynamique minimum Niveau pompe Diamètre du forage	-60.0 -65.0 20.0] m] m] cm	Altitude d'injection	10.00	m	Pum level	Pump de charge	Max. depth

Figure III.33 : Définir le circuit hydraulique de pompage.

Besoins d'eau			Unités hydrauliq	lues		
 Moyenne annuelle Valeurs saisonnières 	Besoins annuels:		Pression	m³/h mCE	~	
O Valeurs mensuelles			Résumé annuel			00000
			Besoin d'eau moyer	1	43.0	m³/jour
			Besoins d'eau annu	els	15695	ma
Variation du niveau sta	tique dans le forage		Pression moy. anno	lelle	30.0	INCE
Constant sur l'année			Energie hydraulique	<u>a (</u>	1283	kWh
	Toute l'année:		Besoin PV (très app	rox.)	4333	kWh
o valeurs saisonnieres	20.0 mCE			295		
Valeurs mensuelles						
0						
Pressions suppl	Altitude d'intection	10 m				
Pressions dynamiques	Tuvaux	1.7 mCE				
(au débit de 8.6 m³/h)	Rabattement	40.0 mCE				
	readereemente	2000000000				
Fichier modèle						

Figure III.34 : Définir les besoins d'eau et pression.

C. Définir le système

Après avoir terminé la définition des besoins en eau pour notre puits, nous passons à l'onglet « système » qui nous donne les résultats de l'énergie requise et nous permet de choisir et définir la pompe à utiliser, ainsi que de sélectionner les panneaux solaires et le régulateur.

Mais tout d'abord, nous commençons par insérer les informations dans la fenêtre du « pré-dimensionnement » en haut de notre interface pour déterminer les pertes et les jours d'autonomie, ce qui aide le logiciel à nous suggérer la capacité du réservoir suffisante en fonction de cela. (Voir Figure III.35)

Suggestions de pré-dimensio	nnement		_	
Besoins en eau journaliers m	ioyens :	Autonomie requise 3.0 ^ Jours	Volume réservoir conseillé	129 m ³
Pression min.	30.0 mCE		Duissance nomne conceillée	1 C UM
Pression max.	48.7 mCE		Puissance pompe conseniee	T-2 KW
Volume	43.0 m3/jour	Manque accepte 5.0 0 %	Puissance PV conseillée	1.9 kWc (nom.)
Puissance hydraulique	922 W (très appr	oximatif)		10 C. 1944 (19

Figure III.35 : Pré-dimensionnement du système de pompage.

Maintenant, nous allons choisir un modèle de pompe parmi ceux disponibles dans cette version du logiciel PVsyst 7.3. Ce logiciel nous aide en fournissant la puissance conseillée pour notre choix et offre des options en trois couleurs (vert, orange, rouge) qui indiquent si la pompe correspond à notre dimensionnement ou non. (Figure ci-dessous)

Lorentz		\sim				
200 W	5-56 m	Well, DC, Cavité progressive	PS20-HR-04			Q Ouvri
		Well, DC, Centrifuge multi-étages	PS1200 SJ8-5		~	
1.2 kW	5-51 m	Well, DC, Centrifuge multi-étages	PS1200 SJ5-8			
1.2 kW	40-120 m	Well, DC, Cavité progressive	PS-1800 HR-14H	Depuis 2017		
1.5 kW	20-70 m	Well, DC, Centrifuge multi-étages	PS2-1800 C-SJ5-12	Depuis 2017		
1.7 kW	2-14 m	Surf, DC, Centrifuge multi-étages	PS2-1800 CS-37-1 Surface	Depuis 1990		
1.7 kW	8-22 m	Surf, DC, Centrifuge multi-étages	PS2-1800 CS-F12-2 Surface	Depuis 1990		
1.7 kW	20-50 m	Surf, DC, Centrifuge multi-étages	PS2-1800 CS-F4-6 Surface	Depuis 1990		
1.7 kW	50-80 m	Well, DC, Centrifuge multi-étages	PS2-1800 C-SJ3-18	Depuis 1990		
1.7 kW	60-100 m	Well, DC, Centrifuge multi-étages	PS2-1800 C-SJ1-25	Depuis 1990		

Figure III.36 : Outil d'aide au choix de pompe par couleurs.

Parmi les pompes disponibles dans la base de données et indiquées en vert, nous avons choisi une pompe de marque « Lorentz », qui est l'une des meilleures sur le marché des pompes solaires. Il s'agit d'une pompe immergée centrifuge multi-étages correspondant à la puissance conseillée et aux paramètres de puits comme la HMT.

hoix d'un modèle de pompe						
.5 kW 20-70 m Well, DC, Cent	rifuge multi-étages PS2-1800 C-SJ5-1	2	Depuis 20:	17		<u> </u>
	-Caractéristiques de la p	ompe				
Pompes en cascade 🕐	Technologie pompe	Centr	ifuge multi-ét	ages		
1 ^ 🔽 Pompes en parallèle	Moteur	Moter	ur DC sans bai	lais		
	Puissance maximale 15	00 W	Tension	140	V	
			Courant max.	10.7	A	
	Pression Min / Nom / Max	20	40	70	mCE	
				1		
	Débit corresp.	7.7	6.2	4.1	m³/h	
	Débit corresp. Puissance corresp.	7.7 1500	6.2 1500	4.1	m³/h W	

Figure III.37 : Choix de notre pompe.

Ensuite, nous allons choisir les mêmes panneaux utilisés dans le premier projet de la marque « SunPower ». Le logiciel nous fournira alors le nombre total de panneaux nécessaires et le schéma de branchement en fonction de notre choix.Ensuite, nous avons déterminé un régulateur universel qui est automatiquement sélectionné par le logiciel pour correspondre à notre système comme dans la Figure ci-dessous.

Disponibles 🗸 🗸		
unPower 470 Wp 65V	Si-mono SPR-X21-470-COM Depuis 2	1020 💛 🖸 Q Ouvr
Iodules nécessaires approx. 4	Dimens. des tensions : Vmpp (60°C) 68.4 V Vco (-10°C) 99.1 V	
Choisissez le mode de régulation et le ré	gulateur node de régulation Convertisseur MPPT-DC V 🖓	
Tous les fabricants V 1000 W Conve	rtisseur MPPT-DC Universal MPPT - DC Converter Generic device	
New York Concerns of the Conce		
Li d	es paramètres de fonctionnement du régulateur universel seront automatiquemer u système.	nt ajustés selon les propriét
La d	es paramètres de fonctionnement du régulateur universel seront automatiquemer u système.	nt ajustés selon les propriét
Conception champ PV Nombre de modules et chaines doit être: 40d. en série 2 2 Seule possibilité	2 Sparamètres de fonctionnement du régulateur universel seront automatiquemer u système. Cond. de fonctionnement Vmpp (60°C) 137 V Vmpp (20°C) 155 V	nt ajustés selon les proprié
Conception champ PV Nombre de modules et chaines doit être: 2 0 verte surpoissanilité 3 0 verte 1 et 3 Perte surpuissance N/A	2 Cond. de fonctionnement du régulateur universel seront automatiquemer Cond. de fonctionnement Vmpp (60°C) 137 V Vmpp (20°C) 155 V Vco (-10°C) 198 V Irradiance plan 1000 kWh/m ² Impp 18.5 A Puiss. max. en fonctior	nt ajustés selon les proprié

Figure III.38 : Choix du module PV.

D. Lancer la simulation

Après la détermination de tous les paramètres pour ce projet, tous les onglets de l'interface de projet seront verts, indiquant que nous pouvons lancer la simulation.

Paramétr Projet	es de simulation pompage d'un puits-	Champ PV
	memoire	
Site	Borj el baal	Modules PV SPR-
Type systèm	ne Pompage	Puissance nominale
Simulation	01/01/80 au 31/12/59	Pression moy.
Progressi	on, temps écoulé : 2 Sec. ute la simulation par pas de 1 hei	ure
	ation 11/07/90	

Figure III.39 : Lancement de la simulation.

E. Résultats et discussion

On va commencer par la figure suivante del'indice de performance. L'indice de performance (PR) est un paramètre clé pour évaluer l'efficacité de notre système photovoltaïque.

Figure III.40 : Indice de performance.

On remarque (dans Figure III.40 ci-dessus) un indice de performance de 69,5 %, ce qui généralement indique une bonne performance de notre système de pompage tout au long de l'année, surtout en janvier, novembre et décembre. Cependant, on peut aussi remarquer un indice un peu faible durant les mois d'été, ce qui peut être dû à une irradiation élevée pendant cette période et donc à une énergie importante non-utilisée.

Ensuite, la (Figure III.41) montre la relation entre la production quotidienne d'eau et l'irradiation globale effective journalière, et on remarque une corrélation positive claire entre la quantité d'irradiation et le volume d'eau pompée. À mesure que l'irradiation augmente, le volume d'eau pompée augmente également.

Figure III.41 : Production d'eau selon l'irradiation par jour.

Facteurs normalisés de production et de pertes: Puissance nominale 2820 Wc

Figure III.42 : Facteurs de production et pertes.

La Figure III.42 nous montre les facteurs d'énergie et de pertes, tels qu'une perte de champ PV de 9,3 % et une autre de 16 % pour les pertes système. L'énergie inutilisée est remarquée durant les mois d'été avec une valeur de 5,3 %, ce qui indique des pertes d'énergie plus importantes et un excédent d'énergie durant cette période.

Dans la Figure III.43, on remarque un manque d'eau pour les mois d'hiver (de mars jusqu'à octobre) causé par une irradiation faible pendant cette période, ce qui affecte la production du champ PV. En revanche, une quantité d'eau excédentaire est observée pour le reste des mois, notamment en juin et juillet, où l'on constate la plus grande irradiation de l'année.

	GlobEff	EArrMPP	E_PmpOp	ETkFull	H_Pump	WPumped	W_Used	W_Miss
	kWh/m²	kWh	kWh	kWh	mCE	m³	m³	mª
Janvier	121.1	328.6	282.7	0.00	49.76	1061	1111	221.5
Février	130.6	352.0	286.6	0.00	49.02	1077	1091	113.3
Mars	168.9	446.5	351.6	0.00	49.18	1309	1238	95.4
Avril	179.8	470.9	354.5	17.84	48.49	1331	1290	0.0
Mai	185.0	477.7	354.8	32.03	48.14	1339	1333	0.0
Juin	196.8	499.1	346.6	59.80	47.39	1290	1290	0.0
Juillet	203.1	506.0	354.9	58.91	48.10	1324	1333	0.0
Août	202.5	503.8	357.6	47.52	49.27	1334	1333	0.0
Septembre	170.9	435.2	340.6	12.92	48.86	1272	1290	0.0
Octobre	154.3	398.8	327.8	0.00	49.40	1232	1312	21.0
Novembre	113.9	305.3	265.1	0.00	48.26	1008	1021	268.7
Décembre	109.5	295.4	249.8	0.00	48.17	949	941	392.2
Année	1936.6	5019.2	3872.4	229.03	48.64	14527	14583	1112.1

Bilans et résultats principaux

Légendes

GlobEff	Global "effectif", corr. pour IAM et ombrages
EArrMPP	Energie champ, virtuelle au MPP
E_PmpOp	Energie de fonctionnement pompe
ETkFull	Energie inutilisée (réservoir plein)
H_Pump	Pression totale moyenne à la pompe

WPumped Volume d'eau pompée W_Used Eau consommée W_Miss Eau manquante

Figure III.43 : Bilans et résultats principaux.

Le diagramme ci-dessous montre les différentes pertes d'énergie à chaque étape du processus, de l'irradiation solaire initiale jusqu'à l'énergie hydraulique à la pompe et le volume d'eau pompée. Les pourcentages indiquent les pertes ou gains relatifs à chaque étape.

Figure III.44 : Diagramme des pertes de charge.

Finalement, la simulation nous a fourni un rapport général (Figure III.45) incluant les résultats de notre étude ainsi que le reste des différents graphiques :

Version 7.3.1

PVsyst - Rapport de simulation

Système de pompage PV

Projet: pompage d'un puits- memoire Variante: pompe solaire pour maison rurale Système de pompage PV Puissance système : 2820 Wc Borj el baal - Algérie

	Pro	ojet: pompage d'u	n puits- memoi	ire	
	Va	riante: pompe solaire	pour maison rura	le	
syst V7.3.1 0, Simulé le : 06/24 01:09 c v7.3.1		2 <u></u>			
		Résumé du	projet —		
Site géographique		Situation		Paramètres du projet	
Borj el baal	5	Latitude	36.30 °N	Albédo	0.20
Algérie		Longitude	0.83 °E		
<u>5</u> 0		Altitude	555 m		
		Fus. horaire	UTC		
borj al baal Meteonorm 8.1 (1996 Système de pomp	-2010), Sat=100 % - Synth	 Résumé du s Forage vers réservo 	système —		
Orientation plan c	apteurs	Besoins d'eau			
Plan fixe	20/08	Constant sur l'année	43.00 m³/jour		
Information systèr Champ PV	ne				
Nb. de modules	-	6 unités			
Pnom total	2	820 Wc			
		 Résumé des 	résultats –		
Eau		Énergie		Efficacités	
Eau pompée	14527 m ³	Energie à la pompe	3872 kWh	Efficacité système	77.2 %
Spécifique	1080 m³/kWc/bar	Spécifique	0.27 kWh/m3	Efficacité de la pompe	53.0 %
Besoins d'eau	15695 m ^a	Inutilisé (réservoir plei	n)		
Eau manguante	7.4 %	Energie PV inutilisée	229 kWh		

Ann

-,				CHICKNEY		
Besoins du système		Caractéristiques du	forage	Rései	voir	
Pression de base	30 mCE	Prof. du niveau statique	-20.0 m	Volum	e	130.0 m ^a
Besoins d'eau		Rabattement	-4.65 m/m³/h	Diamê	tre	5.3 m
Constant sur l'année	43.00 m³/jour	Diamètre	20 cm	Alimer	itation par le haut	
		Niveau pompe	-65.0 m	Altitud	e d'injection	10.0 m
		Niveau dynamique minir	nun960.0 m	Haute	ur (niveau plein)	6.0 m
Circuit hydraulique		Orientation plan cap	teurs			
Longueur de tuyaux	92 m	Plan fixe				
Tuyaux	PE50	Inclinaison/Azimut	30/0 °			
Dint	54 mm					
Nombre de coudes	3					
Autres pertes de charge	1.000					
		Champ PV et	pompe	(s.		
Module PV			Pompe			
Fabricant		SunPower	Fabricant			Lorentz
Modèle	SI	PR-X21-470-COM	Modèle		PS2-1	800 C-SJ5-12
(Base de données PV	/syst originale)		Technologie por	npe	Centrifug	e multi-étages
Puissance unitaire		470 Wc			Pompe imm	ergée (forage)
Nombre de modules PV		6 unités	Moteur		Moteur E	C sans balais
Nominale (STC)		2820 Wc	Convertisseur	associé ou inté	gré	
Modules	3 Chaîn	es x 2 En série	Туре		MPR	т
Aux cond. de fonct. (50°	°C)		Plage de tensior	n	108 - 1	80 V
Pmpp		2621 Wc	Cond. de fond	ctionnement		
U mpp		141 V		Oreceien min	Dressien nem	Decesies may
l mpp		19 A		Pression min.	Pression nom.	Pression max
Puissance PV totale			Débit correen	20.0	6.21	4.07
Nominale (STC)		2.82 kWc	Duiseance reg	1500	1500	1500
Total		6 modules	Tuissance req.	1300	1500	1500
			Appareil de c	ontrôle		
			Modèle	Appareil généric	ue (optimisé selo	n ce système)
			Configuration du	i système	Convertiss	eur MPPT-DC
Contrôleur système d	le pompage					
Contrôle de fonctionner	nent du système					
Régulateur générique, pa	ram. ajustés selon le	e système				
Convertisseur de puiss	ance					
Туре	Convertisseur MPF	PT-DC				
Cond. de fonctionneme	nt					
Puissance nominale		1500 W				
Puissance seuil		15 W				
Efficacité maxi		98.0 %				
Efficacité EURO		97.0 %				
Tension MPP minimale		108 V				
Tension MPP maximale		180 V				
Tension champ max.		200 V				
Courant d'entrée maximu	m	14.0 A				

act. de pert	es thermique	s	Pertes câbl	age DC		Perte de	qualité modu	le
empérature m	odules selon l'ir	radiance	Rés. globale	champ	125 mΩ	Frac. perte	5	-0.8 %
lc (const)	20	.0 W/m²K	Frac. pertes		1.5 % aux STC			
lv (vent)	0	.0 W/m²K/m/s						
ertes de mi	smatch modu	les	Perte de "n	nismatch" s	trings			
rac nortes	0	6 % au MDD	Frac nertes		0.1.%			
rac. penes	0	.0 % ad MITT	The perces		0.1 70			
ffet d'incidenc	erte IAM e (IAM): Fresne 30°	I, anti-reflets, n(v	erre)=1.526, n(A	R)=1.290 70°	75°	80°	85°	90°

Figure III.45 : Rapport de simulation de deuxième partie.

F. Solution

Nous avons identifié quelques défauts dans notre système photovoltaïque grâce aux résultats de la simulation effectuée pour le puits de notre ferme. En conséquence, nous proposons plusieurs solutions.

Tout d'abord, nous pourrions tirer parti de l'énergie excédentaire produite en été en installant un système de stockage utilisant des réservoirs fermés ou souterrains d'une capacité suffisante, comme indiqué dans la Figure III.43 pour compenser les périodes de manque d'eau.

Alternativement, nous pourrions ajouter des batteries et un régulateur à notre système afin d'utiliser l'énergie stockée pendant l'hiver, en tenant compte des critères de sécurité et en faisant le bon choix de batteries afin de ne pas perdre cette énergie jusqu'au moment où elle est nécessaire.

Une autre solution, comme proposée dans le premier projet, consiste à ajuster l'inclinaison optimale de nos panneaux solaires pour maximiser les bénéfices en hiver, en minimisant l'énergie excédentaire pendant les périodes estivales et en augmentant celle disponible pendant les périodes de manque.Il est également crucial d'assurer une maintenance régulière et de qualité pour notre système, ainsi que de choisir soigneusement les composants tels que les convertisseurs et les pompes à haut débit afin de minimiser les pertes.

Enfin, il est possible d'optimiser la gestion de l'eau en utilisant des méthodes d'irrigation plus efficaces telles que l'irrigation goutte à goutte pour éviter les gaspillages, particulièrement durant les mois de faible ensoleillement. De plus, les utilisateurs pourraient exploiter les excédents d'eau estivaux en étendant la surface agricole ou en plantant des arbres supplémentaires. En effet, l'eau excédentaire en été représenté toujours un avantage plutôt qu'un inconvénient.

III.5 Comparaison entre le dimensionnement et la simulation

Les deux tableaux suivants représentent une comparaison entre les résultats obtenus dans la partie dimensionnement du chapitre II et ceux de la simulation dans cette troisième partie :

Le puits	Partie c	le	Partie de sim	ulation	
	dimensionn	ement			
	Nom	Quantité	Nom	Quantité	Commentaire
	d'équipement		d'équipement		
					La puissance crête
					obtenue par la
					simulation est
					inférieure, et avec
Panneaux	ENIE SOLAR		Sun Power		la grande
solaires	310-72-р (325	16	SPR-X21	6	puissance de ces
	W)		(470 W)		panneaux choisis,
					on obtient un

					nombre inferieure.
					Les deux pompes
					correspondent aux
	« Grundfos		« Lorentz		deux cas de calcul,
	SP 9-11 » AC		PS2-1800C »		mais l'une
Pompe	immergée	1	DC immergée	1	fonctionne en
	centrifuge		centrifuge		courant continu
	multi-étages		multi-étages		(DC) et l'autre en
					courant alternatif
					(AC).
	Régulateur		Onduleur		Chacune
Convertisseu	Universel	1	SMA Sunny	1	correspond à la
r	MPPT-DC		Boy 3.0		pompe utilisée.

Tableau III.1 :La comparaison des résultats pour le puits.

Maison et	Partie	de	Partie de sim	nulation	
poulailler	dimension	nement			
	Nom	Quantité	Nom	Quantité	Commentaire
	d'équipement		d'équipement		
					Le nombre de
					modules en
					simulation est
					inférieur, car le
Panneaux	ENIE		Sun Power		module utilisé a une
solaires	SOLAR 310-	24	SPR-X21	22	puissance crête
	72-p (325W)		(470 W)		supérieure à celle
					des panneaux ENIE,
					qui ne sont pas
					disponibles dans le
					logiciel PVsyst.
					La grande capacité
	Rolls opzs		ROLLS 12		des batteries
Batteries	series 5000	24	CS- 11 PS	32	utilisées dans le

	12CS 11P		(296 Ah)		chapitre II explique
	(479 Ah)				un nombre total
					inférieur.
					La simulation utilise
	Victronenerg		Contrôleur		un régulateur
Régulateur	y MPPT	2	universel	1	générique
S	150/85		générique		uniquement pour
			MPPT		illustrer le
					processus.
				\land	La version actuelle
	Sunny				de PVsyst ne
Onduleur	Tripower X	1	Aucune		possède pas encore
	20				une option pour
					l'onduleur

 Tableau III.2 : La comparaison des résultats pour la maison et poulailler.

Conclusion

Dans ce dernier chapitre, nous avons détaillé les méthodologies de simulation utilisées, en expliquant chaque étape du processus. Cette approche nous a permis de réaliser les simulations nécessaires et de mettre en évidence certains défauts ou changements possibles pour améliorer le système. Enfin, nous avons comparé les résultats théoriques du chapitre précédent avec ceux obtenus dans ce chapitre.

Conclusion générale

Conclusion générale

L'objectif principal de notre mémoire est d'intégrer l'énergie renouvelable pour l'électrification d'une maison rurale, en l'absence du réseau électrique. En utilisant une source respectueuse de l'environnement comme l'énergie solaire, afin d'assurer l'éclairage de cette maison isolée située à Bordj Albaal, dans la wilaya de Chlef qui est l'objet de notre étude.

Dans le premier chapitre, nous avons présenté le système photovoltaïque de manière générale en expliquant le fonctionnement de la conversion de l'énergie solaire en énergie électrique. Nous avons décrit les différents composants de ce système, leurs caractéristiques et classifications, en soulignant l'impact de chaque type de composant et leurs avantages spécifiques. De plus, nous avons abordé les différents types d'installations photovoltaïques, qu'elles soient isolées, connectées au réseau ou hybrides. Enfin, nous avons également discuté des pompes solaires en détaillant leurs particularités.

Dans le deuxième chapitre, nous avons dimensionné notre système photovoltaïque pour une maison rurale, divisé en deux parties distinctes. La première partie concerne la maison et le poulailler alimentés par un système PV autonome. Nous avons déterminé le nombre de panneaux nécessaires et sélectionné les autres composants tels que les batteries et le régulateur en fonction de nos besoins estimés. La deuxième partie concerne un système de pompage solaire, où nous avons effectué tous les calculs théoriques pour choisir la pompe adéquate et les panneaux nécessaires pour cette application.

Le dernier chapitre se concentre sur la simulation de notre système photovoltaïque à l'aide du logiciel PVsyst, répartie en deux projets correspondant à nos deux parties précédentes. Nous avons conclu que la simulation est plus précise que le dimensionnement théorique du chapitre II. Grâce aux rapports obtenus et aux figures de résultats basés sur des données météorologiques détaillées, nous avons pu identifier des défauts et proposer des solutions ou améliorations pour notre installation photovoltaïque dans cette ferme rurale.

Nous devons mentionner que le logiciel PVsyst offre l'avantage ou l'option de réaliser une étude économique des résultats ou des composants obtenus, afin d'obtenir un montant total pour cette étude. Cependant, nous n'avons pas pu utiliser cette fonctionnalité en raison de l'absence des prix des matériaux choisis. Cette option peut néanmoins être très bénéfique pour les utilisateurs et les chercheurs, leur offrant une meilleure compréhension des installations PV et de leurs impacts économiques, tout en soulignant leur rôle crucial dans la transition vers un avenir énergétique plus propre et durable.

120

Annexe

			*				
Series	5000	Warr	anty	5	Years		
Volts	12	BCI		SF	PEC		
Cells	6	Plate	s/Cell	11	1		
Terminal T	ype	Flag	L				
Included H	ardware	S/S H	lex Cap Screw,	Nut, Lock &	Flat Was	her	
Size & Thr	ead	5/16	"-18				
Cables		19" 4	4/0 interconnect	t cables *RE	incl.		
			Charge				
Charge Vo	ltage Range		14.7-15 V/cell	@ 25°C (77°	F)		
Recomme	nded Charge (Current	45 A				
Maximum	Charge Curre	nt	70 A				
Self-Disch	arge Rate		5%-10% per m	onth at 25°	C (77°F)		
			Capacity				
Cold Crani	Amps (CCA)	0°F / -1	B°C		871		
Marine Cra	ank Amps (MC	A) 32°F	/ 0°C		1088		
Reserve C	apacity (RC @	25A)			891 1	Minutes	
Reserve C	apacity (RC @	75A)			297 1	Minutes	
Capacity A	Affect by Temp	erature		40°C (104°F)	25°C (77°F)	0°C (32°F)	-15°C (5°F)
				105%	100%	S Washer Washer 1°F) 71 .088 191 Minutes 197 Minutes 197 Minutes 197 0°C -15°C 197 (32°F) (5°F) 0% 75% 50% Current / AMPS 4.79 A	
Hou	ir Rate	Ci	apacity / AMP	Hour	Curr	ent / Al	MPs
@ 100	Hour Rate		479 AH			4.79 A	
@ 72	Hour Rate		453 AH			6.29 A	
@ 50 H	lour Rate		429 AH			8.58 A	
@ 20	Hour Rate		371 AH		1	8.56 A	
@ 15	Hour Rate		345 AH		2	3.02 A	
@ 10	Hour Rate		330 AH			3.04 A	

Electrolyte Reserve	95 mm	3.75"
Container (Inner)	Polypropylene	
Cover (Inner)	Polypropylene	- heat sealed to inner container
Container (Outer)	High Density P	olypropylene
Cover (Outer)	High Density P	olypropylene snap fit to outer container
Handles	Molded	
Notes	IEC 61427-1:20	013

Cycle Life vs. Depth of Discharge

% 90% 80% 70% 60% 50% 40% 30% 25% 20% 15% 10% DEPTH OF DISCHARGE

	Voltage	vs. Depth o	of Discharge	9	
DISCHARGE	0%	25%	50%	75%	100%
20 HR AH RATE	2.10 V	2.05 V	2.02 V	1.96 V	1.75 V
6 HR AH RATE	2.10 V	2.04 V	2.00 V	1.95 V	1.75 V
1 HR AH RATE	2.10 V	2.03 V	1.99 V	1.94 V	1.75 V

Caractéristiques techniques	Sunny Tripower X 12	Sunny Tripower X 15	Sunny Tripower X 20	Sunny Tripower X 25
Entrée (DC)				
Puissance max. du générateur photovoltaïque	18000 Wc STC	22500 Wc STC	30000 Wc STC	37500 Wc STC
Tension d'entrée max.		10	00 V	
Plage de tension MPP	210 V à 800 V	260 V à 800 V	345 V à 800 V	430 V à 800 V
Tension d'entrée assignée		58	80 V	
Tension d'entrée min. / tension d'entrée de démarrage		150 V	/ 188 V	
Courant d'entrée max. utilisable par MPP tracker		24	4 A	
Courant de court-circuit max. par MPP tracker		37	,5 A	
Nombre de MPP trackers indépendants / strings par MPP tracker		3	/ 2	
Sortie (AC)				
Puissance assignée (pour 230 V, 50 Hz)	12000 W	15000 W	20000 W	25000 W
Puissance apparente nominale / Puissance apparente max.	12000 VA/12000 VA	15000 VA/15000 VA	20000 VA/20000 VA	25000 VA/25000 VA
Tension nominale AC	220	V/380V; 230V	/ 400 V; 240 V /	415 V
Plage de tension		176 V à 275 V	/ 304 V à 477 V	
Fréquence du réseau AC / plage		50 Hz/44 60 Hz/54	Hz à 56 Hz Hz à 66 Hz	
Fréquence de réseau assignée / Tension de réseau assignée		50 Hz	/ 230 V	
Courant de sortie assigné / Courant de sortie max.	17,4 A / 20 A ⁴⁾	21,7 A / 25 A4	29 A / 36,6 A	36,2 A / 36,6 A
Phases d'injection / borne AC		3/3	-(N)-PE	
Facteur de puissance à la puissance assignée / facteur de déphasage réglable		1 / 0 inducti	if à 0 capacitif	
Taux de distorsion harmonique (THD)		<	3 %	
Rendement				
Rendement max./rendement europ.	98,2 % / 97,6 %	98,2 % / 97,8 %	98,2 % / 97,9 %	98,2 % / 98,0 %
Dispositifs de protection				
Dispositif de déconnexion côté entrée		5	•	
Surveillance du défaut à la terre / Surveillance du réseau		•	/•	
Protection inversion de polarité DC / Résistance aux courts-circuits AC		•	/•	
Dispositif de surveillance des courants différentiels et de défaut			•	
Classe de protection (selon CEI 62109-1) / Catégorie de surtension (selon CEI 62109-1)		1 / AC :	III ; DC : II	
Protection contre les arcs électriques (AFCI) / Diagnostic de courbe I-V		•,	/ • ¹⁾	
Parafoudre DC (type 2, type 1/2)			0	

Contrôleur de charge SmartSolar avec interface VE.Can	150/70 VE.Can	150/85 VE.Can	150/100 VE.Can (également disponible sans Bluetooth)
Tension de la batterie	12/24/48	V Sélection automatique (36 V : sélect	ion manuelle)
Courant de charge nominal	70 A	85 A	100 A
Puissance nominale PV, 12 V 1a, b)	1000 W	1200 W	1450 W
Puissance nominale PV, 24 V 1a, b)	2000 W	2400 W	2900 W
Puissance nominale PV, 36 V 1a, b)	3000 W	3600 W	4350 W
Puissance nominale PV, 48 V 1a, b)	4000 W	4900 W	5800 W
Courant max. de court-circuit PV 2)	50 A (30 A max. par connexion MC4)	70 A (30 A n	nax. par connexion MC4)
Tension PV maximale de circuit ouvert	150 V : ma 145 V :	aximum absolu dans les conditions le maximum au démarrage et en foncti	is plus froides ionnement
Efficacité maximale		98 %	
Autoconsommation		Moins de 35 mA @ 12 V / 20 mA @ 4	8 V
Tension de charge « d'absorption »	Conf (réglable a	ïguration par défaut :14,4 / 28,8 / 43,3 vec : sélecteur rotatif, écran, VE.Direct	2 / 57,6 V t ou Bluetooth)
Tension de charge « maintien »	Conf (réglable	figuration par défaut :13,8 / 27,6 / 41,4 e : sélecteur rotatif, écran, VE.Direct of	4 / 55,2 V u Bluetooth)
Tension de charge « d'égalisation »	Configuratio	n par défaut :16,2 V / 32,4 V / 48,6 V /	64,8 V (réglable)
Algorithme de charge	Algorithme adaptatif à étapes multi	ples (huit algorithmes préprogramm	és) ou algorithme défini par l'utilisateur.
Compensation de température		-16 mV / -32 mV / -64 mV / ℃	
Protection	Polarité	inversée PV / Court-circuit de sortie /	/ Surchauffe
Température d'exploitation	-30 à +60 ℃	(puissance nominale en sortie comple	ète jusqu'à 40 ℃)
Humidité		95 %, sans condensation	
Altitude maximale	5000	m (sortie nominale complète jusqu'à	2000 m)
Conditions environnementales		Intérieur, sans climatisation	
Niveau de pollution		PD3	
Communication de données		VE.Can, VE.Direct et Bluetooth	
On/off à distance		Oui (connecteur à deux pôles)	
Relais programmable	DPST Puissance nominale CA :240	VCA / 4 A Puissance nominale CC	4 A jusqu'à 35 V DC, 1 A jusqu'à 60 V DC
Fonctionnement en parallèle	Oui. fonctionnement en parallèle s	vnchronisé avec le VE.Can (25 unités i	maxi.) ou le Bluetooth (10 unités maxi.).

onnées générales	Paramètres détaillés Courbe F (P) Dime	ensions Com	mercial Graphiques,	/Conditions de fond	tionnement	
				-		
Modèle	PS2-1800 C-SJ5-12		Fabrican	t Lorentz		
Nom fichier	Lorentz_PS2_1800_C_SJ5_12.PMP		Source données	s Datasheet		
	Para <mark>mètres définis par l'utilisateur</mark>	20-		Prod. depuis 201	.7	(
-Partie électr	ique	Partie	hydraulique			
Type de moteur	Moteur DC sans balais V	Technolo	ogie pompe Cen	trifuge multi-étage	s 🗸 👩	
Entrée pompe o	léfinie:	Tune	da nomna	Unitác		-
O Sans PCU (de	éfini avec le contrôleur)		e de pompe	Pression	mce V	
O Avec convert	tisseur, entrée Vdc fixe	0 Su	nace	FIESSION		
Avec convert	tisseur MPPT	• Im	mergée	Débit	m³/h 🗸	
Convertisseu	ır Step-down	Condition	ons de fonctionne	ment :		
				H Min. H N	om. H Max	
Tension nom.	140 V Valeurs spécifiées pour pression	Pression	en fonctionnement	20.0 40.	.0 70.0 mC	E
Puissance a Himin	1.50 KW nominale	Débit cor	resp.	7.70	6.21 4.07 m ³ /	h
Puissance a HNom	1.50 KW	Puissanc	e	1.50	1.50 1.50 kW	
Puissance à Hmax	1.50 kW	Efficacité	4	28.0% 4	5.1% 51.8%	0
Définition d'un mod	ule PV		Modèle pour l	a pompe bien	défini -	0
Définition d'un mod	lule PV Dimensions et Technologie Paramètres mo	dèle Donnée	Modèle pour la sadditionnelles Co	a pompe bien	défini Jues	•
Définition d'un mod onnées de base	lule PV Dimensions et Technologie Paramètres mo SPR-X21-470-COM	idèle Donnée	Modèle pour la s additionnelles Co Fabricant	a pompe bien	défini Jues	•
Définition d'un mod onnées de base Modèle Nom fichier	Ule PV Dimensions et Technologie Paramètres mo SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN	dèle Donnée	Modèle pour la es additionnelles Co Fabricant Source données	a pompe bien ommercial Graphic SunPower Datasheets 2020	défini Jues	0
Définition d'un mod onnées de base Modèle Nom fichier	Iule PV Dimensions et Technologie Paramètres mo SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale	idèle Donnée	Modèle pour la es additionnelles Co Fabricant Source données	a pompe bien ommercial Graphic SunPower Datasheets 2020 Prod. depuis 2020	défini jues	-
Définition d'un mod onnées de base Modèle Nom fichier (aux STC) chnologie	Iule PV Dimensions et Technologie Paramètres mo SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc Tol/+ 0.0 Si-mono V	dèle Donnée	Modèle pour la es additionnelles Co Fabricant Source données	a pompe bien ommercial Graphic SunPower Datasheets 2020 Prod. depuis 2020	défini _{Jues}	•
Définition d'un mod onnées de base Modèle Nom fichier	Lule PV Dimensions et Technologie Paramètres mo SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc Tol/+ 0.0 Si-mono >	idèle Donnée	Modèle pour la es additionnelles Co Fabricant Source données	a pompe bien ommercial Graphic SunPower Datasheets 2020 Prod. depuis 2020	défini jues	
Définition d'un mod onnées de base Modèle Nom fichier (aux STC) schnologie - Spécifications Cond. de référe	ule PV Dimensions et Technologie Paramètres mo SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc Tol/+ 0.0 Si-mono Si-mono Si-mono Si-mono Si-mono	dèle Donnée	Modèle pour la sadditionnelles Co Fabricant Source données	a pompe bien	défini jues Résumé du mo Paramètres prir	dèle ncipaux (?
Définition d'un mod onnées de base Modèle Nom fichier (aux STC) echnologie -Spécifications Cond. de référe Courant de cour	Lule PV Dimensions et Technologie Paramètres mo SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc Tol/+ 0.0 Si-mono Si-mono s fabricant ou autres mesures ence GRef 1000 W/mi rt-circuit Isc	dèle Donnée	Modèle pour la es additionnelles Co Fabricant Source données TRef 25	a pompe bien	défini ques Résumé du mo Paramètres prir R parall. Rnaral/(G=n)	∂ dèle 1000 €
Définition d'un mod onnées de base Modèle Nom fichier (aux STC) chnologie -Spécifications Cond. de référe Courant de cou Point de Puissar	Lule PV Dimensions et Technologie Paramètres mo SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc Tol/+ 0.0 Si-mono > s fabricant ou autres mesures ence GRef 1000 W/mi rt-circuit Isc Isc 6.450 A Decemax,	dèle Donnée	Modèle pour la s additionnelles Co Fabricant Source données TRef 25 t ouvert Vco 91. Vmpo 77	a pompe bien mmercial Graphic SunPower Datasheets 2020 Prod. depuis 2020 Prod. depuis 2020 V 50 V 60 V	défini jues Résumé du mo Paramètres prir R parall. Rparall. Rparall.(G=0) R série model	dèle 1cipaux (2 17000 \$ 0,70 \$
Définition d'un mod onnées de base Modèle Nom fichier (aux STC) (aux STC) cond. de référe Courant de cou Point de Puissar Coefficient de t	Lule PV Dimensions et Technologie Paramètres modeling SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc Tol/+ 0.0 3.0 Si-mono Si-mono Si-mono s fabricant ou autres mesures ence GRef 1000 W/ministration rt-circuit Isc 6.450 A A empér, mulsc 2.9 mA/°	dèle Donnée	Modèle pour la es additionnelles Co Fabricant Source données TRef 25 t ouvert Vco 91. Vmpp 77. Jules en série 1128	a pompe bien mmercial Graphic SunPower Datasheets 2020 Prod. depuis 2020 Prod. depuis 2020 V 50 V 60 V 8 en série	défini ques Résumé du mo Paramètres prir R parall. Rparall. Rparall(G=0) R série model R série max.	dèle ncipaux (2 17000 5 0.70 5 0.73 5
Définition d'un mod onnées de base Modèle Nom fichier (aux STC) (aux STC) (aux STC) (aux STC) (cond. de référe Courant de cou Point de Puissar Coefficient de t	Lule PV Dimensions et Technologie Paramètres modeling SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc Tol/+ 0.0 Si-mono Simono Stabricant ou autres mesures ence GRef Ince max. Impp Impp 6.060 A empér. muIsc ou muIsc ou muIsc	dèle Donnée	Modèle pour la es additionnelles Co Fabricant Source données Source données TRef 25 t ouvert Vco 91. Vmpp 77. Jules en série 128	a pompe bien ommercial Graphic SunPower Datasheets 2020 Prod. depuis 2020 Prod. depuis 2020 V 50 V 60 V 8 en série	défini ques Résumé du mo Paramètres prir R parall. Rparall(G=0) R série model R série max. R série apparent Davamètres print	dèle ncipaux (17000 (0.73 (1.23 (
Définition d'un mod onnées de base Modèle Nom fichier (aux STC) echnologie -Spécifications Cond. de référe Courant de cou Point de Puissar Coefficient de t	Lule PV Dimensions et Technologie Paramètres modifies SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc Tol/+ 0.0 Si-mono Stabricant ou autres mesures ence GRef 1000 W/mi rt-circuit Isc isc 6.450 ace max. Impp ou mulsc 0.045 %/°C	dèle Donnée Circui C Nb. cel	Modèle pour la sadditionnelles Co Fabricant Source données TRef 25 t ouvert Vco 91. Vmpp 77. lules en série 128	a pompe bien mmercial Graphic SunPower Datasheets 2020 Prod. depuis 2020 Prod. depuis 2020 0 V 50 V 60 V 8 en série	défini pues Résumé du mo Paramètres prir R parall. Rparall(G=0) R série model R série max. R série apparent Paramètres mod Gamma	dèle ncipaux (17000 \$ 0.73 \$ 1.23 \$ lèle 1.028
Définition d'un mod onnées de base Modèle Nom fichier (aux STC) echnologie -Spécifications Cond. de référe Courant de cou Point de Puissar Coefficient de t	Lule PV Dimensions et Technologie Paramètres modifies SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc 470.0 Wc Si-mono s fabricant ou autres mesures ence GRef nce max. Impp mpér. muIsc ou muIsc 0.045 modèle interne	dèle Donnée	Modèle pour la es additionnelles Co Fabricant Source données TRef 25 t ouvert Vco 91. Vmpp 77. lules en série 128	a pompe bien mmercial Graphic SunPower Datasheets 2020 Prod. depuis 2020 Prod. depuis 2020 V 60 V 8 en série	défini ques Résumé du mo Paramètres prir R parall. Rparall(G=0) R série model R série max. R série apparent Paramètres mod Gamma IoRef	dèle toipaux (2 4200 (1700 (0.73 (1.23 (123 (128 (0.01 nA
Définition d'un mod ionnées de base Modèle Nom fichier (aux STC) echnologie -Spécifications Cond. de référe Courant de cou Point de Puissar Coefficient de t -Résultats du Cond. de foncti	Iule PV Dimensions et Technologie Paramètres modeling SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc 470.0 Wc Tol/+ 0.0 Si-mono 96 Si-mono 96 Si-mono 97 Stabricant ou autres mesures ence GRef 1000 W/mit rt-circuit Isc isc 6.450 ace max. Impp ou mulsc 0.045 %/°CC 96/°CC modèle interne 900 onnement GOper 1000 % % 97	vdèle Donnée	Modèle pour la sadditionnelles Co Fabricant Source données TRef 25 touvert Vco 91. Vmpp 77. lules en série 128 TOper 25 de température	a pompe bien	défini ues Résumé du mo Paramètres prir R parall. Rparall(G=0) R série model R série max. R série apparent Paramètres mod Gamma IoRef muVco muPMax fixé	dèle ncipaux (4200 (1700 (0.73 (1.23 (1
Définition d'un mod nonnées de base Modèle Nom fichier (aux STC) echnologie -Spécifications Cond. de référe Courant de cou Point de Puissar Coefficient de t -Résultats du Cond. de foncti Point de Puissar	Lule PV Dimensions et Technologie Paramètres mo SPR-X21-470-COM Sunpower_SPR_X21_470_COM.PAN Base de données PVsyst originale 470.0 Wc 470.0 Wc Si-mono Si-mono	2 Circui C Nb. cel m ² Coeff.	Modèle pour la es additionnelles Co Fabricant Source données TRef 25 t ouvert Vco 91. Vmpp 77. lules en série 128 TOper 25 de température Tension Vmpp rouit ouvert Vco	a pompe bien	défini ques Résumé du mo Paramètres prir R parall. Rparall(G=0) R série model R série max. R série apparent Paramètres mod Gamma IoRef muVco muPMax fixé	dèle toipaux (2 4200 5 1700 5 0.73 5 1.23 5 lèle 1.028 0.01 nA -219 mV/°C -0.29 /°C

Bibliographique

- GHAITAOUI, Elmoulat, Houda KHELIFI, et Amel MENASRIA. « Alimentation d'un Moteur Asynchrone à partir d'un Générateur Photovoltaïque». Diss. Université Ahmed Draïa-Adrar, 2019.
- [2] Nadjib, MECHALIKH Med, et HAMADA Charaf Eddine. « Modélisation et simulation d'un système photovoltaïque en fonctionnement autonome et connecté au réseau». Diss. Université Kasedi Merbah Ouargla.2013..
- [3] Hananou, Fatiha, et Aicha ROUABAH. «Modélisation et simulation d'un système photovoltaïque». Diss. Université Kasedi Merbah Ouargla. 2014.
- [4] Labouret, A., et M. Villoz. «Energie solaire photovoltaïque (Le manuel du professionnel) », édition DUNOD, août2003." Paris (France).
- [5] F.Belaissa, A Tefiani Mohamed. «Etude comparative de l'implantation des systèmes PV autonomes alimentant des habitations similaires dans trois régions climatiques en Algérie». mémoire de master, 2021. Université Saâd Dahlab, Blida-1
- [6] I. FERHAT, «Entretien et maintenance d'une installation photovoltaïque », Diss, 2022.
- [7] S. Petibon, «Nouvelles architectures distribuées de gestion et conversion de l'énergie pour les applications photovoltaïques », Diss, Université Paul Sabatier-Toulouse, 2009.
- [8] T. A. Bouchareb Khalil, « Modélisation et simulation d'un système PV adapté par une commande MPPT basée sur un mode glissant. », 2021,
- [9] S. Semaoui et H. Amar, «Etude de l'électrification d'un village avec de l'énergie solaire photovoltaïque», Diss, 2004.
- [10] K. Amara, « Contribution à l'étude de conception d'une centrale photovoltaïque de puissance (1MW) interconnectée au réseau de distribution électrique moyenne tension. », Diss, Université Mouloud Mammeri, 2015.
- [11] F.Belaissa, A Tefiani Mohamed. «Etude comparative de l'implantation des systèmes PV autonomes alimentant des habitations similaires dans trois régions climatiques en Algérie ». mémoire de master, 2021. Université Saâd Dahlab, Blida-1
- [12] B. L. Sofia, « Cours énergie solaire photovoltaïque, Univ. Mira Bejaia, 2015,
- [13] G. C. Semassou, « Aide à la décision pour le choix de sites et systèmes énergetiques adaptés aux besoins du benin », Diss, Ecole Doctorale de l'Université Bordeaux 1 ED 209, 2011.

- [14] A. BERREGUI et A. ABSA, « Etude technicoéconomique d'une installation photovoltaïque pour application dans la région de Ouargla »,Diss . Consulté le: 28 mai 2024.
- [15] M. BEZZAOUCHA et I. BENYAHIA, « ETUDE ET SIMULATION D'UN SYSTEME PHOTOVOLTAIQUE », PhD Thesis, Université Ibn Khaldoun-Tiaret-, 2021.
- [16] « https://photovoltaique-solaires.blogspot.com/2012/07/branchement-des-panneauxsolaire en_19.html?m=1&fbclid=IwAR17Ojw2iuz6PI2-TCOr_z3bO6KA8-UGQEtDmBw9XCx1MyNoAXDwMlPdt9U.
- [17] M. Belhadj, « Modélisation d'un système de captage photovoltaïque autonome », Mém. Magister Option Microélectronique-Photovoltaïque Cent. Univ. Béchar, p. 43-50, 2008.
- [18] L. Djellal et Y. Dib, « Etude comparative de deux commandes MPPT appliquée à un système photovoltaïque ». Mémoire master, Université Abou-bekr Belkaid de Tlemcen, 2017.
- [19] A. YOUCEF, « Contribution à l'optimisation des performances d'un GPV en présence d'ombrage partiel », Diss, 2017.
- [20] A. A. Mouloud, S. Kadri, et A. Mehaouchi, « Gestion d'énergie dans un système photovoltaïqueavec stockage ». Diss. UNIVERSITY OF OUARGLA.
- [21] S.-A. Tadjer, « Etude d'un système de compensation d'harmonique en utilisant un générateur photovoltaîque GPV », Diss, Boumerdes, Université M'hamed Bougara. Faculté des hydrocarbures et de la chimie, 2008.
- [22] A. Sahli, « Filtrage actif et contrôle de puissances: application aux systèmes photovoltaïques interconnectés au réseau. », Mémoire de magistère,Université de Sétif, 2012.
- [23] « Optimisation of a Hybrid Energy Storage System for Autonomous Photovoltaic Applications »
- [24] O. Gergaud, « Modélisation énergétique et optimisation économique d'un système de production éolien et photovoltaïque couplé au réseau et associé à un accumulateur », Diss, École normale supérieure de Cachan-ENS Cachan, 2002.
- [25] M. I. A. Khelfi et A. Mahiouz, « Supervision d'un système photovoltaïque-stockage alimentant une charge monophasée »,Diss, 2020, Ecole Nationale Polytechnique
- [26] D. Hart, Power Electronics. New York, NY: McGraw Hill Higher Education, 2010.
- [27] O. Benseddik et F. Djaloud, « Etude et optimisation du fonctionnement d'un système photovoltaïque », Mém. Master Univ. Kasdi Merbah-Ouargla, vol. 27, nº 06, 2012.

- [28] L. Zarour et A. Bouzid, « Etude technique d'un système d'energie hybride photovoltaique-éolien hors réseau »,Diss, Université Mentouri Constantine, 2010.
- [29] M. Hankins, Installations solaires photovoltaïques autonomes: conception et installation d'unités non raccordées au réseau. Dunod, 2012.
- [30] H. Ahmed et A. Djamal, « Réalisation d'un régulateur de charge solaire. », Diss, Université Mouloud Mammeri, 2015.
- [31] F. Antony, C. Dürschner, et K.-H. Remmers, Le photovoltaïque pour tous: conception et réalisation d'installations. Observ'ER, 2010.
- [32] F. Brihmat, « L'Etude conceptuelle d'un système de conditionnement de puissance pour une centrale hybride PV/Eolien. », Diss, Université Mouloud Mammeri, 2012.
- [33] H. Bounechba et A. Bouzid, « Contribution à l'étude d'un système de pompage photovoltaïque », Diss, Université Frères Mentouri
- [34] S. Hadadji et H. Kherneg, « Etapes d'étude géospatiale des zones suitables pour dimensionnement d'un système de pompage solaire, cas d'étude: la région de Ghardaïa », Diss, université ghardaia, 2018.
- [35] A. Daoud, « Contrôle de la Puissance d'un Générateur Photovoltaïque pour le Pompage Solaire », Diss .Univ. Mohamed Boudiaf Sci. Technol. Oran, 2013.
- [36] F. Bandou, « Diagnostic de pannes d'un système de pompage photovoltaîque », Diss, Université Mouloud Mammeri, 2010.
- [37] M. L. Louazene, « Contribution à l'optimisation des systèmes photovoltaïques utilisés pour l'irrigation dans les zones sahariennes-Application zone de Ouargla », Diss, Université de Batna 2, 2015.
- [38] https://www.yalink.fr/blog/bilan-puissance/
- [39] B. Abdelbacet et S. Benyoucef, « Etude technico économique d'un système photovoltaïque en site isolé par Pvsyst », Mém. Master Univ. Mohamed Boudiaf-M'sila, vol. 2018, 2017.
- [40] ilide.info-dim-pea-pr_893c3b48882c392a357654d68c0fee68.
- [41] L'irrigation de complément de blé en Algérie (mémoire final corrigé
- [42] A. Mosbah et M. Cherif, « ETUDE DE DIMENSIONNEMENT D'UN SYSTEME DE POMPAGE SOLAIRE A LA REGION DE GHARDAÏA », Diss, université ghardaia, 2017.
- [43] Ch. Hamza, Bouvennik et Abaz, « Pompage solaire pour irriguer les océans agricoles dans la région de Ouargla », Thèse de doctorat, Université Kasdi Merbah, Ouargla
- [44] https://fr.wikipedia.org/wiki/%C3%89coulement en charge
Références bibliographiques

- [45] <u>https://choisirsapompe.wordpress.com/2014/06/25/tuyau-et-calcul-perte-decharge/</u>
- [46] https://www.sintechpumps.com/pompes-centrifuges/comment-mesurer-lefficacite

dune-pompe-centrifuge/?lang=fr

- [47] https://meteonorm.com/en/
- [48] S. GHRIEB, « Etude et dimensionnement d'un système PV/diesel non autonome pour le pompage de l'eau », 2016,
- [49] https://www.pvsyst.com/fr/grid-connected-v7-tutorials/%20pvsyst-tutorial-v7-gridconnected-1-fr
- [50] <u>https://www.pvsyst.com/fr/pdf-tutorials/pvsyst-tutorial-v7-standalone-fr</u>
- [51] https://www.pvsyst.com/fr/pdf-tutorials/ pvsyst-tutorial-v7-pumping-1-fr