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Résumé

La synthèse du nombre de dents des engrenages pour les transmissions planétaires
automatiques utilisées dans les automobiles pose un problème complexe d’optimisation
avec contraintes. Ce travail explore l’application de l’algorithme de recherche gravitation-
nelle (GSA) pour résoudre ce problème. Les paramètres de conception pris en compte sont
le nombre de dents pour chaque engrenage, le nombre de planètes multiples et le module
des engrenages. La fonction objectif est définie comme la différence entre les rapports de
transmission souhaités et réels. Pour assurer un système de transmission fiable, plusieurs
contraintes sont prises en compte, notamment l’évitement du sous-creusement des dents,
la limitation du diamètre total maximal et un espacement adéquat des planètes multiples.
Le cas spécifique d’une transmission planétaire Ravigneaux à 3+1 vitesses est utilisé
comme référence pour explorer l’espace de conception. L’algorithme GSA, largement
reconnu comme une méta-heuristique, est utilisé pour parcourir l’espace de conception et
étudier les effets des différentes contraintes sur le processus de synthèse. Les résultats de
la recherche mettent en lumière l’optimisation du nombre de dents des engrenages dans
les transmissions planétaires automatiques, fournissant ainsi des informations précieuses
pour améliorer les performances, la fiabilité et l’efficacité des transmissions.

Mots clés: synthèse du nombre de dents des engrenages, transmission planétaire au-
tomatique, optimisation contrainte, algorithme de recherche gravitationnelle, évitement
du sous-creusement des dents, diamètre total maximal, planètes multiples, transmission
planétaire Ravigneaux.



Abstract

The gear-teeth number synthesis for automatic planetary transmissions in automobiles
poses a challenging constrained optimization problem. This work explores the application
of the Gravitational Search Algorithm (GSA) to solve this problem. The design parameters
considered are the teeth number of each gear, the number of multiple planets, and the
gear module. The objective function is defined as the deviation between the desired and
actual transmission ratios. To ensure a reliable transmission system, several constraints
are incorporated, including teeth-undercut avoidance, limitation on the maximum overall
diameter, and proper spacing of multiple planets. The specific case of a 3+1 speed Ravi-
gneaux planetary transmission is used as a benchmark to explore the design space. The
GSA, a widely recognized meta-heuristic algorithm, is employed to navigate the design
space and investigate the effects of different constraints on the synthesis process. The
research findings shed light on the optimization of gear-teeth numbers in automatic plane-
tary transmissions, providing valuable insights into improving transmission performance,
reliability, and efficiency.

Keywords : gear-teeth number synthesis, automatic planetary transmission, constrained
optimization, Gravitational Search Algorithm, teeth-undercut avoidance, maximum over-
all diameter, multiple planets, Ravigneaux planetary transmission.
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GENERAL INTRODUCTION

Mechanical systems play a crucial role in achieving efficiency and optimal performance in
engineering. Among various components, gears and transmissions have a profound impact
on numerous industries, serving as the backbone of countless machines and mechanisms.
Their wide range of applications includes automotive, aerospace, and robotics, highlighting
their significance.

Planetary gearing stands out due to its compact design, high ratio potential, and rugged-
ness, making it ideal for unique applications. However, the design and optimization of plan-
etary gears remain challenging, primarily due to the complex interactions between their
components and the intricate design space. One particular pressing issue that has garnered
considerable attention is the generation of noise. The noise produced not only impacts sys-
tem performance and reliability but also poses negative effects on human comfort and en-
vironmental concerns.

To address these issues, this thesis aims to leverage meta-heuristics as effective tools
to assist mechanical systems in overcoming their design challenges. Meta-heuristics are
renowned for their capacity to solve optimization problems across a wide range of domains.
Specifically, this research will focus on employing the gravitational search algorithm (GSA), a
nature-inspired optimization technique that simulates the gravitational forces between ce-
lestial bodies. By utilizing GSA, we aim to enhance the performance and efficiency of plane-
tary gear trains and the objective is to determine the optimal number of gear teeth that not
only meet the required transmission ratios but also minimize noise. This approach holds
great potential in addressing the previously mentioned issue of noise generation and im-
proving overall system performance.

In order to achieve this objective, the thesis is structured into three chapters as follows :

• The first chapter, provides a comprehensive review of gears in general, with a specific
focus on planetary gear trains. It covers various aspects such as their design, types, and
the basics foundation necessary to understand their mechanical system.

• In the second chapter, we delve into optimization techniques. Without further ado, we
specifically focus on the gravitational search algorithm (GSA) and explain in detail how
we will implement it on the planetary gear train. This includes providing a detailed
pseudo-code of the GSA.

I.M.S.I 1



• The third chapter presents a detailed formulation of the optimization problem, con-
sidering various design constraints and objectives. The mathematical model repre-
sents the planetary gear system, incorporating relevant parameters such as gear ratios,
contact ratios, and the number of planet gears. This model will be evaluated through
case studies and comparative analyses with existing optimization techniques, using
the GSA implemented in MATLAB. The effectiveness of this methodology will be as-
sessed to demonstrate its efficacy.

• Finally, we conclude our work with some results and a general conclusion.

I.M.S.I 2



CHAPTER 1

AUTOMATIC PLANETARY GEARS TRAIN

1.1 Introduction and history

Around 500 BCE, the Greeks invented the idea of epicycles which refers to circles travel-
ling on the circular orbits. This concept is also known as planetary gears. With this the-
ory Claudius Ptolemy in the Almagest in 148 CE was able to approximate planetary paths
observed crossing the sky[1] and were initially intended to help predict the movements of
planets in the solar system. They were long known primarily as clockworks [2], but did not
find industrial application until the late 18Th century, at the end of the 18Th century, the sun
and planet gear method of converting reciprocating motion to rotary motion and was used
in the first rotative beam engines. was invented by the Scottish engineer William Murdoch,
an employee of Boulton and Watt, but was patented by James Watt in October 1781 [3]. It
was invented to bypass the patent on the crank, already held by James Pickard.[4]. It played
an important part in the development of devices for rotation in the Industrial Revolution.
, the planetary gear trains are nowadays increasingly widely used in the different fields of
engineering and in particular in the mechanical engineering sector. Also, Planetary gear are
used to transmit power in various industrial applications, including automotive and off-road
transmissions, wheel drive motors, industrial conveying applications, and others. In addi-
tion, they can be used as a power train between internal combustion engines or connected
to electric motors [5]. All planets and planetary gears have three main bodies, which we call
a central element: the planet carrier, the ring gear, and the sun gear. The planet gears are
connected to the planet carrier by bearings and mesh with the sun gear and the ring gear[6].
The number of planetary gears depends on the design load of the system.Planetary gears (or
epicyclic gears) are usually categorised as simple or complex. Simple planetary gears fea-
ture a single sun, ring, carrier, and planet set. Compound planetary gears use one or more
of the following three structures: meshed-planet (at least two more planets in each planet
train mesh with each other), stepped-planet (a shaft connection exists between two planets
in each planet train), and multi-stage structures (the system contains two or more planet
sets). Compound planetary gears feature a higher reduction ratio, a higher torque-to-weight
ratio, and more versatile combinations than basic planetary gears.

I.M.S.I 3



1.2. EXPLORING THE WORLD OF GEARS

1.2 Exploring the World of Gears

Exploring the World of Gears provides a comprehensive examination of the fundamental
components that drive mechanical systems.

1.2.1 Overview

A gear is a circular machine part with teeth that rotate and connect with another toothed
part to transfer power and speed. The sizes of the gears affect how fast they rotate and how
much force they can generate. Gears are employed to transmit motion and power from one
revolving shaft to another [7]. The gear shafts can only be rotated one position at a time. They
can be parallel, cross-sectional, or have an angle or intersect at an arbitrary point. Because
of this, modern industrial machinery can operate with no limit on the applications of these
components.

1.2.2 Classification of gears

In gear engineering, it is essential to categorize types of gears based on their specific prop-
erties and uses, which is referred to as gear classification. Engineers obtain valuable insights
into their unique properties, enabling them to select the most suitable gear types for specific
tasks. The main classifications of gears can be broadly divided into three categories, which
are:

1.2.2.1 Gears for Parallel shafts

The motion between parallel shafts is same as to the rolling of two cylinders.

Spur Gears Spur gears are the most commonly used gear type. They are by far the most
common affordable option. When the axes are parallel, the teeth of the meshing gears can
be cut in a straight line on the surface of the gear blank. There are many special types of spur
gears, some of which are less common. Although these special shapes do not differ signifi-
cantly from ordinary spur gears in tooth action, it may refer to one or two of these shapes that
are sometimes found in special applications. The spur gear meshes with an element called
a rack. A rack can be thought of as a small segment of an infinitely large spur gear, a gear
whose diameter is so large that the teeth are almost in a straight line, spur gears generally
cannot be used when a direction change between the two shafts is required [8].

Figure 1.1: Spur Gear.[8]
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Helical Gears Used with parallel shafts similar to spur gears, helical gears are spur gears
with serpentine tooth lines. They have better meshing, are quieter and can carry higher
loads than spur gears, making them suitable for high-speed applications. When using helical
gears, they generate axial forces in the axial direction, which necessitates the use of thrust
bearings. Single helical gears impose both radial loads and thrust loads on their bearings
and so require the use of thrust bearings[9]. The helix angles on the pinion and gear must be
the same magnitude but opposite, the right pinion meshes with the left gear.

Figure 1.2: Helical gear.[9]

Herringbone Gears It is two sets of opposing helical teeth placed side by side[10]. They
are commonly referred to as having a double helical gear arrangement with balanced thrust.
There is no thrust load on the bearing. Like helical gears, they have the advantage of trans-
mitting power smoothly because more than two teeth are meshing at any one time.

Figure 1.3: Herringbone gears.[10]

Rack and Pinion In these gears the spur rack can be considered to be spur gear of infinite
pitch radius with its axis of rotation placed at infinity parallel to that of pinion. The pinion
rotates while the rack translates.
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Figure 1.4: Rack and Pinion.[11]

1.2.2.2 Gears for Intersecting Shafts

The motion between two intersecting shafts is equivalent to the rolling of two cones. The
gears used for intersecting shafts are called bevel gears.

Bevel/Miter Gear It is conical in shape and is used to transmit power between two shafts
that intersect at a point. Its rolling surface is a conical surface, and the teeth are cut along
the conical surface.

Figure 1.5: Bevel Gea

1.2.2.3 Gears for Skew Shafts

A worm gear is sometimes called a worm wheel, it has teeth that are oblique to the axis of
rotation and cut radially into the gear face. The teeth are helical to match the helix angle
of the teeth on the auger. They are usually used in speed reducers. Worm gears are quiet,
vibration free and give a smooth output[11].
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Figure 1.6: A worm gear.[11]

Hypoid Gears The Hypoid Gears are made from special shapes called frusta of hyperboloids
of revolution. When two hypoid gears have the same line of contact, they are created by ro-
tating it. However, it’s important to note that these gears are not interchangeable.

Figure 1.7: A Hypold gear.[11]

1.3 Planetary Gear Train

1.3.1 Overview

A planetary gear is a type of gear system comprised of spur gears. In planetary gearing there
is a central gear known as the sun gear, serves as the input and driver of the set. Three or
more “driven” gears (referred to as planets) rotate around the sun gear. Finally, the planets
engage with a ring gear from the inside, which makes an internal spur gear design. Because
the planet gears are evenly distributed around the sun, planetary gear trains are known to be
extremely rugged designs. Another benefit of a planetary gear set is that it is easy to convert
to a different ratio by simply changing out the carrier and sun gears.,and is widely used in
power transmission and serves as the most critical component. Planetary gears are often
used to adjust inertia, reduce motor speed, and increase torque while providing a robust
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mechanical interface. the planetary gears systems have high torque density, compact, low
inertia and can be grease lubricated for life, which are demands of industrial applications
[12].

A planetary gear set uses spur gears that move opposite of each other within the same
plane. While spur gears are a more basic type of gear in terms of engineering since they
do not utilize speciaL angles or cuts like bevel or herringbone gearing, they are complex
in the tooth shape design. Depending on the application, this tooth design will determine
where the teeth make contact, which then determines the available power, torque, and speed
potential of the gears.

Figure 1.8: Planetary Gear System.[12]

1.3.2 Why is it Named a Planetary Gearbox?

The term "planetary gearbox" originated from the synchronized movement of its various
gears. It consists of a sun gear, a ring gear (also called a satellite gear), and two or more
planet gears. The sun gear is typically the driving gear, which in turn rotates the planet gears
that are attached to a carrier, ultimately forming the output shaft. The satellite gears remain
fixed in position relative to the outer components. This arrangement resembles the structure
of our solar system, hence the name "planetary." Interestingly, ancient gear systems used in
astrology for tracking celestial bodies shared similarities with this gearbox design.
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Figure 1.9: Solar system.

However, in practical discussions regarding industrial applications, we focus on the func-
tionality of planetary gearboxes. Thus, we refer to the sun gear as the input shaft, the planet
gears as the carrier, the output shaft, and the satellite gear (or ring component) as the hous-
ing.

1.4 Design and Analysis of Planetary Gear Trains

A planetary gear train combines multiple parts to efficiently transmit torque, relying on their
precise design for optimal performance and power distribution.

1.4.1 Parts of PGT

consists of several parts, each playing an important role in transmitting power from the input
shaft to the output shaft. Here are the main parts of a planetary gear train:

1.4.1.1 Sun Gear

The sun gear is the central gear in a planetary gear train and is usually driven by the input
shaft. The planet gears rotate around the sun gear and transmit power to the output shaft.

1.4.1.2 Planet Gears

The planet gears are typically mounted on a carrier that rotates around the sun gear. The
number of planet gears can vary depending on the desired gear ratio and torque capacity.

1.4.1.3 Ring Gear

the ring gear is the outermost gear in a planetary gear train and is usually fixed to the gearbox
casing. The planet gears mesh with the ring gear, transmitting power to the output shaft.

1.4.1.4 Carrier

The carrier holds the planet gears and allows them to rotate around the sun gear. The carrier
can be fixed or rotating, depending on the gear train configuration.
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1.4.1.5 Bearings

The bearings support the rotating parts of the planetary gear train and allow them to rotate
smoothly with minimal friction.

These are the main parts of a planetary gear train, but some gear trains may have addi-
tional components such as thrust washers, seals, and lubrication systems to ensure smooth
and efficient operation.

1.4.2 Design of PGT

A planetary gear train is a compact and efficient gear system that relies on several compo-
nents to transmit torque and rotation. The central component of the system is the sun gear,
which is surrounded by several planet gears that are mounted on the carrier. The planet
gears rotate around the sun gear and mesh with a ring gear that encloses them, providing
the outer surface of the gear system. Each component of the planetary gear train plays a cru-
cial role in the system’s overall operation and performance. To gain a better understanding
of how these components work together, we will examine the design of each part in detail:

1.4.2.1 Sun Gear and Planets Design

The design of a sun gear largely depends on how the load distribution between the planets
is equalized. Most often, the sun gear is made of carbonized steel.

Planets are intermediate wheels, which, in a certain sense, act as parasitic (auxiliary)
wheels as they do not affect the speed ratio. Most often planets are made of the same steels
as the sun gear and are also carbonized and case hardened. It should be remembered that
in the same gear train, it is desirable that the matched gears are made of a different material
(different grades of steel) in order to reduce the risk of scuffing.

Figure 1.10: Sinphase montage of planets, with radial orientated run-out to the center of sun
gear [2]

The faces of all planets of the gear train are simultaneously ground to be parallel. When
toothing (cutting or grinding) a package, the orientation of planets can be marked with paint,
so that the so-called sinphase montage can be carried out.
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1.4.2.2 Ring Gear Design

Ring gear is a specific gear of Abrasion-Inhibited Planetary Gear train(AI-PGT). Unlike the
sun gear and planets, the ring gear does not usually harden and very rarely grind. It is made
of hardened (tempered), alloy or non-alloy steel, through hardening (tempering), for easy
machining. Since the ring gear is a thin-walled and easily deformable part, it is necessary
that when tightened on the gear-cutting machine, there are no deformations which will sub-
sequently occur in the performance of the gear train in a very unfavorable manner.

1.4.2.3 Gears Thermal and Chemico-thermal Treatment

For PGTs gears, the following thermal and chemico-thermal treatments are the most com-
mon:

• Carburizing and case hardening.

• Through hardening (tempering).

• Nitriding, respectively, ionnitriding.

1.4.2.4 Gears Accuracy Measurement

From every point of view, gears require special attention to design, high-quality machining,
and reliable quality control. Quality of PGT (its reliability, durability, heating, noise and vi-
bration, etc.) first depends on its gears. The type and number of accuracy measurements of
gears depend on the requirements and responsibility of the PGT (on the estimations of the
designer, manufacturer, and user).
The gear accuracy measurements are as follows: On the cutting machine, in all cases, the
base tangential length (span measurement, measurement of Wildhaber) of gears with exter-
nal teeth is measured (Figure 1.9), and in some cases (a large module), this is also possible
for gears with internal teeth. Span length is determined as follows:

Figure 1.11: Base tangential length (span) W measurement of external and internal teeth: (a)
Ways of measuring; (b) determining of the number of measured teeth w... [2]

Over zw = 3 teeth
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W = 2pb + sb = (zw −1)pb + sb; (1.1)

Over zw = 5 teeth

W = 4pb + sb = (zw −1)pb + sb; (1.2)

where pb is the base pitch, pe is the meshing pitch, sb is the external tooth thickness at
the base circle with diameter db, and s = πm +2mx tanα.is the external tooth thickness at
the reference circle with diameter d.

pb = pe =πm cosα (1.3)

sb = db

(
s + 1

α

)
(1.4)

1.5 Types of PGTs

By manipulating various components of a planetary gear train, such as the number of gears
or the types of gears used, it is possible to create multiple variations adapted to specific re-
quirements. PGTs can differ in various features, including:[13]:

Figure 1.12: Components of a PGT.[13]

1.5.1 According to the carrier number

• Simple Planetary Gear (single carrier): This type of planetary gear has only one
gear set, consisting of a sun gear, planet gears, and a ring gear. The planet gears are
mounted on a single carrier pin, which is fixed to the gearbox housing. The planet
gears rotate around the sun gear and mesh with the ring gear to produce the gear re-
duction.

• Compound Planetary Gear (Multi-carrier ): This type of planetary gear has two gear
sets, each with its own planet carrier. The sun gear is in the middle and meshes with
both sets of planet gears. The planet gears in each set rotate in opposite directions and
mesh with the ring gear to produce the gear reduction.
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• Epicyclic Planetary Gear (planet carrier): This type of planetary gear has three or
more gear sets, each with its own planet carrier. The sun gear is in the middle, and
the planet gears in each set rotate around the sun gear and also rotate around their re-
spective planet carriers. The planet carriers themselves rotate around a fixed annulus
gear to produce the gear reduction.

1.5.2 According to the component PGTs number

• Simple Planetary Gear: It is the most basic form of planetary gear and has the fewest
components.

• Compound Planetary Gear: This type of planetary gear has additional components
such as a carrier, which holds the planet gears in one set and meshes with the planet
gears in the other set. It also has a set of idler gears to transmit power between the two
sets of planet gears.

• Complex Planetary Gear: This type of planetary gear has more than two sets of planet
gears, and the planet gears in each set can mesh with more than one ring gear. It
also has additional components such as multiple carriers, sun gears, and idler gears
to transmit power between the different sets of planet gears.

1.5.3 According to the gear wheels type

• Spur Planetary Gear: All the wheels are spur gears, which have straight teeth and are
parallel to the axis of rotation. the gear reduction is achieved through the interaction
of these gears.

• Helical Planetary Gear: Which are at an angle to the axis of rotation. The helical
teeth provide smoother and quieter operation than spur gears and can transmit more
torque.

• Bevel Planetary Gear: which have conical shaped teeth and are mounted at an angle
to the axis of rotation. Bevel planetary gears are used when the direction of the input
and output shafts needs to be changed, such as in a differential.

• Hypoid Planetary Gear: which have curved teeth and are mounted at an angle to the
axis of rotation. Hypoid planetary gears are used in applications where high torque is
required and where the input and output shafts are not in the same plane.

1.5.4 According to the gears tooting and meshing

• With external meshing: The planet gears mesh externally with both the sun gear and
the ring gear. The sun gear and the ring gear are typically stationary, while the planet
gears rotate around the sun gear and mesh with the ring gear.

• With Novikov meshing:It is a specific form of external meshing; the planet gears are
mounted on a carrier that is connected to the output shaft. The carrier rotates around
the sun gear, and the planet gears mesh with both the sun gear and the ring gear si-
multaneously.

I.M.S.I 13



1.5. TYPES OF PGTS

• With internal meshing: the planet gears mesh internally with both the sun gear and
the ring gear. The sun gear and the ring gear are typically rotating, while the planet
gears are stationary and mesh with the sun gear and the ring gear from inside.

• Hybrid Meshing: Some of the planet gears mesh externally with the sun gear and inter-
nally with the ring gear, while others mesh vice versa. This configuration can provide
a balance between torque capacity and compactness.

• Involute: The teeth are in the form of involutes, which are curves generated by un-
winding a taut string from a circle. Involute gears are known for their smooth and
quiet operation.

• Cycloidal: The teeth are in the form of cycloids, which are curves generated by tracing
a point on a circle as it rolls along a straight line. Cycloidal gears are known for their
high torque capacity and their ability to transmit power smoothly.

1.5.5 According to the basic speed ratio i0

• Positive-ratio PGTs: The output shaft rotates in the same direction as the input shaft.
In other words, the basic speed ratio of a positive-ratio PGT is greater than 1.

• Negative-ratio PGTs: Also known as counter-rotating PGTs, the output shaft rotates
in the opposite direction to the input shaft. In other words, the basic speed ratio of a
negative-ratio PGT is less than 1.

1.5.6 According to the external shafts number

• Single-shaft planetary gears: This type of planetary gear has only one external shaft,
which can be either the input or output shaft. The other end of the gear system is
typically connected to a fixed frame or housing.

• Multi-shaft PGTs: Have two external shafts, one for the input and one for the output.
The sun gear is typically connected to the input shaft, and the ring gear is typically
connected to the output shaft.

• Three-shaft PGTs: Has three external shafts, which are typically arranged in a T-shape.
The input shaft is typically connected to the sun gear, and the output shafts are typi-
cally connected to the carrier and ring gear.

1.5.7 According to the external shafts coaxiality

• Coaxial PGTs: The external input and output shafts are aligned along a common axis,
and it is the most common.

• Uncoaxial: The external input and output shafts are not aligned along a common axis.

1.5.8 Applications of PGT

PGT have a wide range of applications in various industries such as in:

I.M.S.I 14



1.5. TYPES OF PGTS

1.5.8.1 Wind turbines

Wind turbines are ecologically friendly energy sources that use the power of the wind to cre-
ate electricity. One critical component of these turbines is the gearbox, which suffers the
highest downtime and loss. To assure their lifespan, a flexible pin based on the original
straddle-mounted pin design was created [14]. This redesigned pin allows for better load
sharing and distribution within a wind turbine gearbox’s planetary gear set (PGS). Wind tur-
bines are used to transform the kinetic energy of the wind into electrical energy. They are
made up of revolving blades positioned on a rotor that provide power to the main shaft. A
generator is used to transform mechanical energy into electrical energy, and a gearbox is
used to modify the rotation speed of the main shaft to meet the rated speed of the generator.
The turbine is additionally supported by components such as the tower and the rotor yaw
mechanism. The blades and rotor typically revolve at a modest speed of 10-20 rpm, impart-
ing significant torque. Induction generators, on the other hand, produce power effectively
at 1000-2000 rpm. As a result, most wind turbines have a gearbox to enhance rotor speed.
Because of its high-power density and concentric input and output shafts, planetary gear
sets (PGS) are the preferable choice for this application. Because of the substantial input
torque from the blades, the first PGS in the system suffers the highest stress. Furthermore,
the gearbox is a complicated component of a wind turbine and hence has the longest down-
time, making it a key area of worry. As a result, several researches have been undertaken to
improve the durability of wind turbine gearboxes (WTGBs).

Figure 1.13: Planetary Gear Train used in a wind turbine.[14]

1.5.8.2 Helicopters

Planetary gear systems are commonly utilized as the final step of transmission in helicopters.
These systems generally have 3 to 18 gears, with planetary gear ratios ranging from 5:1 to 7:1
[15].

A planetary gear train is used in the primary transmission of a rotor craft, which consists
of an inner "sun" gear surrounded by five revolving "planets." The sun gear transfers torque
to the planets, which are mounted on a planetary carrier. The torque is subsequently trans-
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mitted to the main rotor shaft and blades through the planetary carrier plate. Epicyclic gears
are used extensively in rotor craft transmission systems.

Figure 1.14: Super Puma Epicyclic Gear.
[15]

1.6 Pros and Cons of Planetary Gear Trains

Planetary gear systems are a popular choice for situations where higher gear ratios are needed
in a compact space. These arrangements are preferred for reducing speed in tight areas.
Compared to traditional gearboxes, planetary systems are lighter weight for similar gear ra-
tios. They also have a higher power transmission efficiency, meaning that a larger proportion
of the input energy is delivered to the output. Additionally, they have a higher torque trans-
mission capability and lower inertia, which leads to better load distribution and increased
torque transmission. In planetary systems, the driving and driven members are concentric,
allowing for equipment to be installed in the same line and saving space. Planetary gear sys-
tems also provide higher stability and a longer service life compared to traditional gearboxes
for similar loads.

Planetary gear systems offer many advantages, but there are also some drawbacks. One
of the most significant disadvantages is the noise generated during operation. Some plan-
etary gearheads can be quite noisy, which can be problematic in applications where noise
levels need to be kept low. The complexity of planetary gears makes them more difficult to
manufacture and maintain, and this complexity can exacerbate noise issues. In addition to
noise, high bearing loads resulting from the use of planetary gears can lead to early wear in
dead stud or sleeve bearing construction, which can cause even more noise and reduce the
lifespan of the gear system. Determining the efficiency of a planetary gear system can also
be difficult, and the higher level of internal friction compared to other types of gears can lead
to more energy being lost as heat and noise, further contributing to noise issues. Finally, the
multiple stages of planetary gears can result in a high ratio of length to diameter, resulting in
a long gearhead. This can be problematic in applications with limited space and may worsen
noise issues.
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1.7 Conclusion

Planetary gears are commonly used in various industries. Since the gear is one of the most
important components of the planetary gear mechanism, these gears will affect the entire
transmission system. Planetary gears have proven themselves to provide the necessary sta-
bility in mechanical systems. The gearbox is also lighter in weight compared to other boxes.
On the other hand, planetary gears are difficult to maintain compared to more traditional
systems However, research clearly shows that most planetary gearboxes can outlast the de-
sign life of the machine. Another common problem associated with these transmission sys-
tems is noise. However, planetary systems still face many challenges that conventional gears
cannot solve. To sum up, the planetary gear system has low inertia, high torque density
and compact structure. These properties explain why the planetary principle has recently
attracted a lot of attention and have convinced mechanical engineers that planetary gear
drives will continue to be widely used in various machines, toys, electric motors and au-
tomation systems in the future.
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CHAPTER 2

META-HEURISTICS OPTIMIZATION: GRAVITATIONAL
SEARCH ALGORITHM

2.1 Introduction

Planetary gear trains are commonly used in a wide range of industrial applications due to
their compactness and high-power transmission capabilities. They produce high speed re-
ductions in compact spaces, greater load sharing, higher torque to weight ratio, diminished
bearing loads, and reduced noise and vibration[16], despite their advantages, the noise in-
duced by a variety of sources, including gear meshing, bearing vibration, and transmission
error, remains a key concern. With the advancement of technologies in engineering sci-
ence, there has always been an advent of optimization for further refinement, researchers
have turned to optimization techniques that aim to reduce noise levels while maintaining
the necessary levels of power transmission and efficiency. Optimization seeks the maximum
or minimum value of an objective function corresponding to variables defined in a feasible
range or space. More generally, optimization is the search of the set of variables that pro-
duces the best values of one or more objective functions while complying with multiple con-
straints. In the context of planetary gear trains, optimization can be used to find the optimal
gear tooth geometry, gear materials, lubricants, and other design parameters that minimize
noise while satisfying other performance requirements. Optimization techniques have been
successfully applied to a range of planetary gear train applications, including wind turbine
gearboxes, automotive transmissions, and industrial gearboxes. By reducing noise levels,
optimization can improve the overall performance, reliability, and durability of planetary
gear trains, making them more suitable for a wide range of applications.

2.2 Optimization problems

The word “optimum” is Latin, and means “the ultimate ideal;” similarly, “Optimus” means
“the best”. Therefore, to optimize is to make an effort to move whatever we’re working on
closer to its ideal condition. Getting the best configuration (optimal solution) out of all fea-
sible configurations under specific conditions, and doing it with reference to a particular
criterion, is what is meant by optimization in the broadest sense.

In mathematics, optimization frequently entails identifying the values of one or more

I.M.S.I 18



2.2. OPTIMIZATION PROBLEMS

variables that maximize or minimize a certain objective function while meeting a given set
of restrictions. The optimization problem P (Ω, f ) is characterized by a feasible setΩ and an
objective function f . The formulation of the optimization problem requires the specification
of the following notations:

• Objective function: The "objective function" is the criterion that should be optimized
and is an objective measure of the quality of the solution. It allows us to maximize or
minimize a numerical value, such as a project’s cost, profit value, or even the noise
level of a material. The goal of using the objective function is to attain a desired target
for the output. From a mathematical perspective, the technical representation of the
objective function is:

Minimize or Maximize =
n∑

i=1
ci Xi

• Decision variables: they are unknown and controllable parameters of the problem
whose objective is to find their value to solve the optimization problem. The value of
the decision variables determines the value of the objective function. Depending on
the problem under consideration; they can take discrete (integer) or continuous (real)
values. Often these variables are restricted or constrained, i.e. they must check certain
conditions called constraints. They take their values in a domain called search space.

• Search space: The "search space" is the set of solutions in which the desired solution
exists, encompassing the problem’s upper and lower boundaries. This space can be a
discrete and well-defined data structure in computer science or, in the case of deci-
sion theory, an expansive and possibly infinite set that necessitates the generation of
individual elements throughout the search process.

• Candidate or feasible solution: The candidate or feasible solution, also known as a
vector of decision variables satisfying all constraints of the optimization problem, is a
set of values that forms the feasible region. This set of feasible solutions defines the
feasible space where the decision variables are grouped together.

A minimization problem of an objective function f (x), subject to inequalities (and some-
times qualities) constraints, is presented as:

min
x∈Ω

f (x) : Sc

{
g (x) ≤ 0 (m inequality constraints )

h(x) = 0 (p equality constraints )
(2.1)

Noting that each minimization problem can be transformed into a maximization problem
and vice versa.
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Figure 2.1: "Global Optimization".

2.2.1 Types of optimization methods

The diversity of optimization problems implies different types of optimization methods. We
can distinguish between two global types: Deterministic optimization methods (called ex-
act) and Non-deterministic optimization methods (heuristic and metaheuristic).

2.2.1.1 Deterministic methods

A deterministic method is the method of choice if it can solve an optimization problem with
the effort that grows polynomially with the problem size. These methods take advantage of
the analytical properties of the problem such as convexity, continuity, and differentiability
to obtain the optimal solution in a finite time and to prove its optimality[17]. We mention
here the two most recognized methods: Newton’s method and gradient methods. The situa-
tion is different if the problem is NP-Hard, where the exact optimization techniques require
exponential effort. In that case, even medium-sized problem instances become intractable
and cannot be solved using these methods. Therefore, non-deterministic techniques are the
best alternative to solving NP-Hard problems.

2.2.1.2 Non-deterministic methods

Some optimization problems remain beyond the reach of exact methods. A certain number
of characteristics can be problematic, such as the absence of strict convexity (multimodal-
ity), the existence of discontinuities, and a non-derivable. In addition, determinist methods
may take time that grows exponentially with the problem size. The optimization problem in
this case is said to be NP-hard and cannot be solved using exact methods.
Thus, non-deterministic methods (heuristic and metaheuristic) has been specifically de-
veloped for these type of optimization problems. They are stochastic iterative algorithms
that can provide approximate solutions of good quality in a reasonable time without guar-
anteeing optimality. Heuristic algorithms are commonly problem-specific as they exploit
the properties of the problem. When a heuristic can be generalized to several types of prob-
lems without significant modification, one speaks then of metaheuristics. The latter will be
discussed in more detail in the next section.
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2.3 Meta-heuristic optimization techniques

When discussing optimization techniques, the conversation inevitably turns to meta-heuristics.
However, before delving further into the topic, it is important to provide a brief overview of
the history of meta-heuristics.

2.3.1 History of meta-heuristics

The term "meta-heuristics" was first coined by Fred W. Glover in the late 1970s[18], the pre-
fix Meta is derived from the Greek word "metá," which means "beyond" or "transcending."
In modern usage, the prefix "meta-" is often used to indicate something that is higher or
more abstract than the thing it modifies. In the context of problem-solving and optimiza-
tion, "meta" is used to refer to higher-level strategies that operate beyond the level of indi-
vidual solutions. While heuristics comes from the Greek word "heuriskein", which means
"to find" or " to discover". In modern usage, heuristics refer to problem-solving strategies or
rules of thumb that help individuals or machines find solutions to complex problems quickly
and efficiently. So meta-heuristics, for example, are optimization strategies that operate at
a higher level than the individual search algorithms used to find solutions[19]. In the 1990s,
meta-heuristics started gaining wider recognition and popularity in the scientific commu-
nity. More sophisticated algorithms were developed, such as Ant Colony Optimization, Par-
ticle Swarm Optimization, and Simulated Annealing, which showed promising results in var-
ious problem domains. Since then, meta-heuristics have continued to evolve and diversify,
with new algorithms and hybrid methods being developed regularly. With the growth of
computational power and the availability of large data sets, meta-heuristics are becoming
increasingly important and have found applications in various fields such as engineering,
finance, medicine, and logistics, among others. Since then, meta-heuristics have continued
to evolve and diversify, with new algorithms and hybrid methods being developed regularly.
With the growth of computational power and the availability of large data sets.

2.3.2 Overview

Meta-heuristic (MH) algorithms have received wide attention and have been employed to
solve various optimization problems. Due to their unique capabilities in solving them. These
algorithms are developed by taking inspiration from natural phenomena or the behavior of
living organisms, such as animals, insects, and other organic beings. Over time, numerous
meta-heuristic algorithms have been introduced and applied to a variety of real-world opti-
mization problems across various domains.

Also, they are problem-independent optimization techniques that can be applied to a
wide range of combinatorial optimization problems. They are heuristic methods that use
higher-level strategies to find appropriate values for the decision variables of an optimiza-
tion problem so that the objective function is optimized [20]. There are many different
types of meta-heuristics, each with their own strengths and weaknesses. In general, meta-
heuristics are used when traditional optimization methods are not sufficient, due to the
complexity or size of the problem, or the presence of non-linear or non-convex constraints.
They are widely used in many fields, including operations research, computer science, en-
gineering, finance, and biology Generally the complexity of the real-life problems are in in-
creasing in a manner that it become Difficult for the traditional mathematical programming
methods to solve and optimize them. Most of the real-life optimization’s problems are non-
linear, complex, multi-modal, and they have an incompatible objectives functions in which
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the process of obtaining an optimal or even near-optimal solutions is a very difficult task,
generally, there is no guarantee of getting an optimal solution for real-life problems [21][22].

2.3.3 Types of meta-heuristics

Figure 2.2: Taxonomy of meta-heuristic optimization algorithms.Source:EL-Ghazali Talbi
"FROM DESIGN TO IMPLEMENTATION"

Over the last decades, there has been a growing interest in algorithms inspired by the behav-
iors of natural phenomena. Each algorithm has its own strengths and weaknesses, making
them suitable for different types of optimization problems. These are just a few examples of
the many types of meta-heuristics available:

2.3.3.1 Genetic Algorithms (GA)

The term genetic algorithm, almost universally abbreviated nowadays to GA, was first used
by John Holland [23], is a meta-heuristic inspired by the process of natural selection that be-
longs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly
used to generate high-quality solutions to optimization and search problems by relying on
bio-inspired operators. The basic idea behind genetic algorithms is to simulate the process
of evolution by creating a population of potential solutions, applying genetic operators such
as selection, crossover, and mutation to generate new candidate solutions, and then evalu-
ating the fitness of these solutions to select the best ones for the next generation

2.3.3.2 Simulated Annealing

This technique is emulating the physical annealing of solids to solve optimization problems.
Is so named because of its similarity to the process of annealing in metallurgy[24], where a
material is heated and slowly cooled to achieve a desired structure. In optimization, simu-
lated annealing gradually cools a system to find the global minimum. The algorithm works
by generating a set of candidate solutions and evaluating their fitness based on a specified
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objective function. It then iteratively adjusts the candidate solutions by applying a perturba-
tion function that adds random noise to the current solution. The perturbation function is
controlled by a temperature parameter that determines the level of randomness in the search
process. As the temperature decreases, the perturbation function becomes less random and
the search process becomes more focused on the best solutions found so far. The process
of generating new solutions as the system is cooled is repeated until termination criteria are
satisfied.

2.3.3.3 Particle Swarm Optimization

The PSO Algorithm is a population-based stochastic optimization technique first invented
in 1995.and inspired by the social behavior of birds flocking or fish schooling [25]. the PSO
has been used to solve a wide range of optimization problems, including function optimiza-
tion, feature selection, and parameter tuning. The advantages of PSO include its simplicity,
fast convergence, and ability to handle high-dimensional search spaces. However, PSO can
sometimes get stuck in local optima, and the performance of the algorithm depends heavily
on the choice of parameters.

Figure 2.3: "Schematic representation of updating the velocity of a particle".[25]

2.3.3.4 Harmony Search

The HS is a meta-heuristic algorithm inspired by artificial phenomena found in musical
compositions [26]. The algorithm was first proposed by Geem in 2001[27]. Musicians test
different possible mixtures of musical pitches. Such a process of search for a fantastic har-
mony can be simulated numerically to find the optima of optimization problems. The al-
gorithm works by generating a set of candidate solutions, or "harmonies," and then refining
these solutions through an iterative process of evaluation and modification. The algorithm
evaluates the quality of each harmony and uses this information to guide the generation of
new candidate solutions. This process continues until a satisfactory solution is found, or
until a predefined termination criterion is met.
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Figure 2.4: "An Illustration of the Harmony Search Algorithm Using Musical Notes".[27]

2.3.3.5 Tabu Search

The tabu search (TS) was developed by Glover (1986) [28]. It is based on the principle of
making local moves in a search space to find a better solution while avoiding getting trapped
in local optima. Tabu Search employs a tabu list that keeps track of the recently visited solu-
tions and prevents the algorithm from revisiting them. This allows the algorithm to explore
other regions of the search space that may lead to better solutions. At each iteration of the
algorithm, a new candidate solution is generated by making a small change to the current
solution. The quality of the new solution is then evaluated, and if it is better than the current
solution, it is accepted as the new current solution. If the new solution is worse than the
current solution, it may still be accepted with a certain probability, based on a temperature
parameter that controls the probability of accepting worse solutions.

2.3.3.6 Ant Colony Optimization

Was introduced by Dorigo et al. (1991, 1996), It attempts to simulate in algorithmic fashion
the foraging behavior of ants [29]. The ACO takes inspiration from the foraging behavior of
some ant species that deposit pheromone on the ground to mark favorable paths for colony
members to follow to procure food. In ACO, a set of artificial ants are used to search for the
best solution in a given search space. Each ant constructs a solution by iteratively selecting
a next move based on a combination of pheromone trails and heuristic information. The
pheromone trails represent the collective experience of the colony, while the heuristic in-
formation guides the ants towards better solutions. The pheromone trails are updated after
each iteration based in the quality of the solutions found by the ants.

I.M.S.I 24



2.3. META-HEURISTIC OPTIMIZATION TECHNIQUES

Figure 2.5: "Ant Colony Optimization (ACO) algorithm".

2.3.4 Applications of meta-heuristics

Meta-heuristic algorithms are a popular and fascinating field of study among scientists, re-
searchers, and academics. They can be applied to various domains with different require-
ments. This is achieved by utilizing a combination of techniques to navigate the search
space, avoid getting stuck in local optimal solutions, and determine when acceptable so-
lutions have been discovered. Meta-heuristics enable the management of the trade-off be-
tween performance and solution quality, making them highly relevant to practical applica-
tions. As meta-heuristics are motivated by pragmatic purposes, their connection to real-
world scenarios is strong. Classical meta-heuristics, have shown their suitability to solve
complex scheduling problems, space allocation problems, and clustering problems, among
others [30]. Here are a few examples of how meta-heuristics have been applied in practice:

2.3.4.1 Optimization of industrial processes

M-H, such as genetic algorithms and particle swarm optimization, has been used to optimize
complex industrial processes, such as chemical production, manufacturing, and logistics. By
exploring a large design space and identifying the best solution that meets the desired crite-
ria, such as cost, quality, and efficiency, meta-heuristics can help improve the productivity
and profitability of industrial operations.

2.3.4.2 Portfolio optimization in finance

MH, such as simulated annealing and genetic algorithms, have been applied to portfolio
optimization, where the goal is to allocate assets in a way that maximizes returns while min-
imizing risks. By finding the optimal combination of assets that balances risk and reward,
portfolio managers can improve the performance of investment portfolios and reduce the
impact of market volatility.

2.3.4.3 Resource allocation in healthcare

MH, such as ant colony optimization and tabu search, have been used to optimize patient
scheduling and resource allocation in hospitals. By reducing wait times, minimizing costs,
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and improving patient outcomes, meta-heuristics can help healthcare providers improve the
efficiency and effectiveness of healthcare delivery.

2.3.4.4 Traffic management

MH, such as ant colony optimization and genetic algorithms, have been used to optimize
traffic flow, route planning, and vehicle routing, with the goal of reducing congestion, min-
imizing travel times, and improving safety. By identifying the best routes for vehicles or
pedestrians, traffic engineers can improve the performance of transportation networks and
enhance the mobility of people and goods.

2.3.4.5 Design optimization

MH, such as genetic algorithms and simulated annealing, have been used to optimize the
design of complex systems, such as aircraft structures, power grids, and communication net-
works. By exploring a large design space and identifying the best solution that meets the de-
sired criteria, such as performance, reliability, and cost, meta-heuristics can help engineers
design better products and systems.

Overall, meta-heuristics have broad applications and are particularly useful for solving
complex optimization problems where traditional methods are not effective.

2.3.5 Hybrid meta-heuristics

Hybrid meta-heuristics: Are optimization algorithms that combine two or more different
meta-heuristics to create a new, more powerful algorithm. The goal of hybridization is to
leverage the strengths of each individual algorithm and to compensate for their weaknesses
[31]. The combination of different meta-heuristics can lead to improved performance and
faster convergence to better solutions. There are several ways to combine different meta-
heuristics to create a hybrid algorithm. One approach is to combine them sequentially,
where one meta-heuristic is used to explore the search space initially, and then another is
used to refine the solutions obtained by the first algorithm. Another approach is to combine
the algorithms in parallel, where they run simultaneously, and their solutions are merged
periodically to create a new population.
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Figure 2.6: "Classification of Hybrid Meta-heuristics".

There are many examples of hybrid meta-heuristics, some of which include:

2.3.5.1 Ant Colony Optimization with Tabu Search

This hybrid algorithm combines the global search capabilities of an ant colony optimization
algorithm with the local search capabilities of a tabu search algorithm. It works by using the
pheromone trails created by the ants to guide the search towards promising regions of the
search space, and then applying tabu search to refine the solutions found by the ants.

2.3.5.2 Particle Swarm Optimization with Simulated Annealing

This hybrid algorithm combines the swarm-based search of a particle swarm optimization
algorithm with the stochastic search of a simulated annealing algorithm. It works by using
the particle swarm to explore the search space and identify promising regions, and then ap-
plying simulated annealing to further refine the solutions found by the swarm.

2.3.5.3 Genetic Algorithm with Differential Evolution

This hybrid algorithm combines the population-based search of a genetic algorithm with
the mutation and recombination operators of a differential evolution algorithm. It works by
evolving a population of solutions using genetic operators such as crossover and mutation,
and then applying differential evolution to generate new solutions and improve the quality
of the population. The goal is to create an algorithm that is able to find high-quality solutions
efficiently and effectively, even for complex and challenging optimization problems

2.3.6 Applications: Parameter tuning

is an important aspect of meta-heuristic optimization, as it can greatly affect the perfor-
mance of the algorithm. Meta-heuristics often have several parameters that must be set
before the optimization process can begin. These parameters can include things like popu-
lation size, mutation rate, crossover rate, selection strategy, and stopping criteria. Choosing
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the right values for these parameters can be a challenging task, and often requires a signif-
icant amount of trial and error. There are several methods for parameter tuning in meta-
heuristics, including:

2.3.6.1 Grid search

This method involves testing the algorithm with a range of parameter values and selecting
the combination that gives the best performance.

2.3.6.2 Random search

This method involves randomly selecting parameter values within a given range and evalu-
ating the algorithm’s performance.

2.3.6.3 Evolutionary algorithms

These algorithms can be used to optimize the parameter values by treating them as a set of
decision variables and applying a meta-heuristic algorithm to find the optimal values.

2.3.6.4 Bayesian optimization

This method involves constructing a probabilistic model of the algorithm’s performance
based on previous evaluations and using this model to guide the selection of new param-
eter values. Parameter tuning processes usually requires a large number of runs of the algo-
rithm to analyze its performance on one instance or a set of problem instances with different
parameter settings [32].

2.4 Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) is a recent addition to the collection of meta-
heuristic algorithms that draw inspiration from celestial mechanics. By using masses to rep-
resent candidate solutions, GSA has demonstrated its effectiveness in solving challenging
optimization problems, making it an interesting alternative to other popular optimization
techniques.

2.4.1 Overview

The Gravitational Search Algorithm (GSA) is a meta-heuristic optimization algorithm that is
inspired by the law of gravity and the motion of celestial objects. It was proposed in 2009 by
Rashedi, Nezamabadi-Pour, and Saryazdi[33]. and has since become a popular choice for
solving a variety of optimization problems in engineering, science, and other fields. The al-
gorithm is grouped under population-based method which is consisting of different masses.
Based on the gravitational force, the masses are sharing information to direct the search to-
wards the best location in the search space. This algorithm which is based on the physics’
laws seems to demonstrate better characteristics when compared with bio-inspired or other
nature-inspired algorithms such as GA, PSO, and ACO. The basic idea behind GSA is to simu-
late the interactions between celestial bodies in space, where each body represents a poten-
tial solution to an optimization problem. The bodies are attracted to each other by the force
of gravity, which is proportional to their masses and inversely proportional to the distance
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between them. As the bodies move towards each other, they undergo a process of accel-
eration, velocity, and position update, which allows them to converge towards the optimal
solution[34]. In GSA, each mass (agent) has four specifications: position, inertial mass, ac-
tive gravitational mass, and passive gravitational mass. The position of the mass corresponds
to a solution of the problem, and its gravitational and inertial masses are determined using
a fitness function[35]. In other words, each mass presents a solution, and the algorithm is
navigated by properly adjusting the gravitational and inertia masses. By lapse of time, we
expect that masses be attracted by the heaviest mass. This mass will present an optimum
solution in the search space.

The GSA could be considered as an isolated system of masses. It is like a small artificial
world of masses obeying the Newtonian laws of gravitation and motion.

2.4.1.1 Law of gravity

It states that every particle of matter in the universe attracts every other particle with a force
that is proportional to the product of their masses and inversely proportional to the square
of the distance between them. The mathematical formula for the gravitational force between
two objects is:

F (i , j ) = G ∗mi (t )∗m j (t )

r (i , j )2
(2.2)

Where F is the force of gravity, G is the gravitational constant, mi and m j are the masses of
the objects, and r is the distance between them.

2.4.1.2 Law of motion

The current velocity of any mass is equal to the sum of the fraction of its previous velocity
and the variation in the velocity. Variation in the velocity or acceleration of any mass is equal
to the force acted on the system divided by mass of inertia.

2.4.1.3 Newton’s First Law

The law of inertia An object at rest will remain at rest, and an object in motion will continue
to move at a constant velocity in a straight line, unless acted upon by an external force.

2.4.1.4 Newton’s Second Law

The law of acceleration, the acceleration of an object is directly proportional to the force
applied to it and inversely proportional to its mass. The direction of the acceleration is in the
direction of the applied force.

2.4.1.5 Newton’s Third Law

The law of action and reaction for every action, there is an equal and opposite reaction. This
means that when one object exerts a force on another object, the second object exerts an
equal and opposite force back on the first object.
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the searcher agents are a set of masses that affect each other’s according to New- ton’s
gravity law and move according to Newton’s second law. Now, consider a system with N
objects. The position of each object is considered as an answer for the optimization problem
which represents a point in the search space. The position of the object (Xi ) in the search
space is defined as follows:

Ξ= (x1, . . . , xd , . . . , xD ) for i = 1,2, . . . , N (2.3)

where xd represents the positions of the ith agent in the dth dimension, N denotes the
total number of particles, and D denotes the dimension of the search space. In the initial-
ization phase, a population of particles is generated, in which their positions are determined
randomly in the search space. Although the initial velocity of the particles is considered to be
zero, it can be a different value if it is necessary. After evaluating the fitness of particles, the
position vector of the best particle which has the highest fitness is specified by X best. Now,
the gravitational mass and inertial mass of objects are calculated by the following relations:

mi (t ) = fiti (t )−worst(t )

best(t )−worst(t )
, i = 1,2, . . . , N (2.4)

Mi (t ) = mi (t )∑N
j=1 m j (t )

(2.5)

Mai = Mpi = Mi i = Mi (2.6)

where fit(t ) is the fitness value of the i th particle at time t , Mai is the active gravitational
mass of particle i , Mpi is the passive gravitational mass of particle i , and Mii is the inertia
mass of particle i . In this algorithm, best(t ) and worst(t ) represent the fitness of the best
particle and the worst particle, respectively. In a minimization problem, these parameters
are defined in the following form:

fit(t ) = G ·Mai ·Mpi

r 2
it

(2.7)

Mai = best(t )− fit(t )

best(t )−worst(t )
·Mii +Mii (2.8)

As mentioned before, in GSA each particle attracts the other particles. The attractive gravi-
tational force acting on particle i from particle j in the dth dimension can be calculated in
the following form:

Fattrd
i j

(t ) = G(t ) ·Mpi (t ) ·Ma j (t )

ri j (t )p +ϵ · (xd
j (t )−xd

i (t ))

d = 1,2, . . . ,D

i , j = 1,2, . . . , N

where Mpi (t ) is the passive gravitational mass of particle i , Ma j (t ) is the active gravitational
mass of particle j , ϵ is a small value, p is the power of distance, and ri j (t ) is the Euclidean
distance between particles i and j , which is defined as follows:

ri j (t ) = ∥Xi (t ), X j (t )∥2 (2.9)
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The gravitational constant G(t) is calculated as follows:

G(t ) =G0 exp

(
− αt

tmax

)
(2.10)

where tmax is the total number of iterations, G0 is the gravitational constant at time 0, and α

is a shrinking constant which controls the decay rate of the exponential function.
After that, the total force that acts on the i th agent in dimension d (F d

i (t )) is defined as
follows:

F d
i (t ) = ∑

j∈Kbest, j ̸=i
r and j ×F d

attri j
(t ) (2.11)

where rand j is a uniformly distributed random number in the interval [0,1], Kbest represents
the K particles with the best fitness value and biggest mass, which is a function of time. K0

is its initial value at the beginning.
In the last step, the particles move with respect to the total gravity forces acting on them.

For this purpose, the following equation is used:

xd
i (t +1) = xd

i (t )+ vd
i (t +1) (2.12)

where xd
i (t ) represents the current positions of the i th agent in the dth dimension, xd

i (t +
1) represents the positions of the i th agent in the dth dimension in the next iteration, and
vd

i (t+1) defines the velocity of the i th agent in the dth dimension in the next iteration, which
is calculated as follows:

vd
i (t +1) = randi × vd

i (t )+ad
i (t ) (2.13)

where randi is a uniformly distributed random number in the interval [0,1], ad
i (t ) is the ac-

celeration of particle i in direction d , which is calculated as follows:

ad
i (t ) = F d

i (t )

Mi i (t )
(2.14)

where Mi i (t ) = Mi (t ) is the inertial mass of the i th particle.

2.4.2 Application of GSA

The GSA has been successfully applied to various optimization problems, Table 2.1 summa-
rizes only the major utilization of GSA in some of the optimization problems:
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OPTIMIZATION

Table 2.1: GSA Utilization and Performance Summary in Various Optimization Problems

Application GSA Utilization Objective func-
tion

GSA Performance Ref.

Power system used for voltage
control by adjust-
ing the reactive
power variables

Minimize active
power losses in
transmission line

High-quality solu-
tions with more
reliability and effi-
ciency

[36]

power dispatch Solving multi ob-
jective optimal re-
active power dis-
patch problems

Minimize trans-
mission loss while
maintaining the
quality of voltages

Converged to
better solutions
much faster

[37]

Economic load
dispatch

Finding optimum
emission dis-
patch,optimum
fuel cost,best
emission and fuel
cost

Minimizing the
emission level
and cost of gener-
ation

Outperformed
other available
techniques in
terms of solu-
tion quality and
computational
efficiency

[38]

Optimal power
flow(OPF)

Determine the
optimal settings
of control vari-
ables of OPF
problem

Minimize the
settings of con-
trol variables
subjected to var-
ious equality and
inequality con-
straints

Effective and
robus high quality
solution

[39]

Classification Determine the
optimal values of
fuzzy ARTMAP
training parame-
ters

Optimize training
parameter of a
fuzzy ARTMAP
neural network

Performed better
in terms of de-
tection rate,false
alarm rate,and
cost per example
in classification
problems.

[40]

2.5 The Advantages of Choosing the Gravitational Search Al-
gorithm for Optimization

In this study, we sought to reduce the noise in a planetary gear train using a meta- heuristic
optimization approach. Through a comprehensive review of the literature and a careful valu-
ation of different meta-heuristic methods, we selected Gravitational Search Algorithm (GSA)
as the most suitable technique for our optimization problem. Our decision was based on
GSA’s ability to handle non-linear and non-convex optimization problems, as well as its ease
of implementation and computational efficiency. Additionally, previous research has shown
the effectiveness of GSA in engineering optimization problems related to gear design and
vibration reduction, which gave us further confidence in its suitability for our specific appli-
cation. Planetary gear trains are known for their complex non-linear dynamics, which can
make it difficult to achieve optimal design parameters using traditional optimization tech-

I.M.S.I 32



2.6. HOW WE IMPLEMENT PLANETARY GEAR TRAIN

niques. However, GSA is well-suited to handle such problems and has been shown to pro-
duce high- quality solutions even in the presence of non-linearity’s. Another factor that in-
fluenced our decision was the ease of implementation and computational efficiency of GSA.
Compared to other meta-heuristics, such as Genetic Algorithm (GA) and Particle Swarm Op-
timization (PSO), GSA is relatively straight forward to implement and requires fewer compu-
tational resources. This allowed us to perform a larger number of simulations and explore
a wider range of design parameters, ultimately leading to more accurate and robust results.
Finally, previous studies [41] [42] [43],have demonstrated the effectiveness of GSA in solving
similar engineering optimization problems, including those related to gear design and vi-
bration reduction. These studies provided us with confidence in the efficacy of GSA for our
specific application and motivated us to choose it as our primary optimization tool. Overall,
we believe that the Gravitational Search Algorithm is a powerful and effective meta- heuristic
optimization technique for reducing noise in planetary gear trains. Its ability to handle non-
linear and non-convex optimization problems, combined with its ease of implementation
and computational efficiency, made it an ideal choice for our study.

2.6 How we implement planetary gear train

To implement the GSA for planetary gear train optimization, we first define the design pa-
rameters of the gear train, which may include the number of teeth on the gears, the gear ra-
tios, and the gear module. Next, we define the objective function, which represents the noise
level of the gear train. This objective function is evaluated for each set of design parameters,
and the resulting value is used to calculate the gravitational force between the masses. The
GSA algorithm then iteratively updates the positions of the masses based on the gravitational
force, with the goal of finding the optimal set of design parameters that minimizes the noise
level of the gear train. As the algorithm progresses, the masses move towards the location of
the minimum gravitational potential, which represents the optimal solution. To evaluate the
effectiveness of the GSA in reducing noise in planetary gear trains, we are going to conduct
simulations on a variety of gear train designs. Our goal is to determine whether the GSA can
identify optimal design parameters that lead to a significant reduction in gear train noise
levels, when compared to traditional optimization methods. The Gravitational Search Algo-
rithm (GSA) is a promising optimization tool for reducing noise in planetary gear trains. By
simulating the interaction between masses in a gravitational field, the GSA has the potential
to optimize the design parameters of the gear train and achieve significant noise reductions.
If our upcoming experiment confirms the effectiveness of the GSA, it could provide engi-
neers with an efficient and reliable method for improving the performance of these critical
mechanical systems.

2.7 The pseudo-code of GSA

GSA, like any other algorithm, is a set of instructions or rules that is used to solve problems
or perform specific tasks. Algorithms are the backbone of computer programming, and ev-
ery computer program can be broken down into a series of logical steps or instructions that
must be executed in a specific order to achieve the desired outcome. These steps must be un-
ambiguous and well-defined so that they can be executed by a computer or other machine.
Algorithm steps provide a systematic approach to problem-solving, allowing for complex
tasks to be broken down into smaller, more manageable parts.
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The steps involved in the GSA algorithm are as follows:

2.7.1 Define initial parameters

setting up the initial values for variables such as the number of agents, maximum iterations,
and gravitational constant.

• Population size (N)

• Number of iterations

• Gravitational constant (G)

• Acceleration due to gravity (A)

• Range for the position vector (lower and upper bounds)

2.7.2 Create the initial population randomly

This means that a set of solutions is generated without any prior knowledge or bias towards
the problem at hand. The randomness in the initial population helps to ensure that the
algorithm explores a wide range of potential solutions.

• Randomly initialize the position vector (Xi) within the specified bounds

• Calculate the objective function value (Fitness) for each particle

• Set the initial velocity vector (Vi) to zero

2.7.3 Calculate the fitness function for all object

The fitness function Is a measure of how well each object solves the problem at hand. And
it is calculated by applying the objective function to each object in the population. The ob-
jective function is a mathematical function that takes the object as input and returns a value
that represents how well the object solves the problem.
The fitness function allows us to rank the objects in the population based on how well they
perform. This ranking is used in the next step to select the objects that will be used to create
the next generation.

f (⃗x) = R
max
k=1

|ik − i0k |,

2.7.4 Calculate G , Worst and Best

Calculate G :This value affects the movement of the agents and their convergence to the op-
timal solution.

Worst:
Worst = M

max
j=1

[F (X j )]
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Helps to identify the least fit or the poorest performing individual in the current popula-
tion.

Best :

Best =
M

min
j=1

[F (X j )]

The best solution is the one with the highest fitness value among all solutions in the pop-
ulation.

• Then, the reltive normalized fitness value is calculated as follows:

ψ(X j ) = F (X j )−"Worst"

"Best"−"Worst"
, ∀ j = 1,2, . . . , M

2.7.5 Calculate mass value for all objects

You can think of the mass of an agent as a measure of its influence on other agents in the
swarm. Agents with higher fitness values (i.e., better performance) will have higher masses,
and therefore, will have a greater influence on the movement of other agents in the swarm
The mass of an agent is calculated using a simple formula, where the mass is inversely pro-
portional to the fitness value:

Mass(X j ) = ψ(X j )∑M
j=1ψ(X j )

, ∀ j = 1,2, . . . , M

2.7.6 Calculate the acceleration and update velocity and position of ob-
jects

This helps agents move towards better solutions in the search space, by:

• Calculating the acceleration of each agent using Newton’s second law of motion.

• Updating the velocity and position of each agent based on its acceleration.

Ai =
(

Ftotal

mass of particle i

)
· (position of the best particle−Xi )

Vi =Vi + Ai

Xi = Xi +Vi

2.7.7 Perform Genetic operators

Involves applying genetic operators such as crossover and mutation to the agents in the
swarm to introduce diversity and prevent the algorithm from converging to a local mini-
mum.

I.M.S.I 35



2.7. THE PSEUDO-CODE OF GSA

Crossover :
Crossover is a genetic operator that involves combining genetic information from two

parent agents to produce offspring agents. In the context of GSA, crossover can be applied
to the position vectors of agents. Let’s denote the position vectors of two parent agents as P1
and P2. The crossover operation can be performed as follows:

• Select a crossover point randomly within the length of the position vectors.

• Create two offspring agents, O1 and O2.

• Assign the genetic information before the crossover point from P1 to O1 and from P2
to O2.

• Assign the genetic information after the crossover point from P2 to O1 and from P1 to
O2.

• The crossover operation allows the exploration of different combinations of genetic
information, facilitating the search for improved solutions.

Mutation :
Mutation is a genetic operator that introduces random changes to an agent’s genetic in-

formation. In GSA, mutation can be applied to the position vectors of individual agents.
Let’s consider an agent with a position vector P. The mutation operation can be performed
as follows:

• Select a mutation point randomly within the length of the position vector.

• Perturb the genetic information at the mutation point by adding a small random value
to it.

• Update the position vector of the agent with the mutated information.

The mutation operation helps introduce diversity in the population and allows explo-
ration beyond the influence of gravitational forces.

2.7.8 Perform local search for best solution of the current iteration

The algorithm examines the neighborhood of the best solution and tries to find a better so-
lution within that neighborhood. This can be done by making small perturbations to the
current solution and evaluating their fitness. If a better solution is found, it replaces the
current best solution.

2.7.9 Stop criteria is reached ?

refer to the conditions that determine when an algorithm should halt its execution. These
criteria are essential to ensure that the algorithm stops running when it has achieved a sat-
isfactory solution or when it is unlikely to improve further. include:

• Maximum number of iterations:The algorithm terminates after a predefined number
of iterations have been reached.
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• Convergence criteria:The algorithm stops when the solution has converged to a stable
state or when the improvement in the objective function becomes negligible.

• User-defined criteria: determining when an algorithm should stop its execution. are
specific to the user’s requirements or preferences.

Define initial parameters

Create the initial population randomly

Calculate the fitness function for all object

Calculate G, Worst and Best

Calculate mass value for all object

Calculate the acceleration and velocity of objects

Update the position of each object

Perform Genetic operators

Perform local search for best solution of the current iteration

Stop criteria is reached ?

Return best solution

Yes

No

Figure 2.7: "The pseudo code of Gravitational search algorithm(GSA)".
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2.8 Conclusion

We have explored the concept of meta-heuristics that have proven to be effective in solving
a wide range of complex problems in various domains. and We have discussed in detail the
specific meta-heuristic that we have chosen for our work the gravitational search algorithm
(GSA). Despite being a relatively recent algorithm, GSA shows great promise in solving com-
plex optimization problems. Through our analysis, we have found that GSA is a powerful
meta-heuristic with many benefits, such as its ability to quickly converge and find optimal
solutions. However, one potential limitation of GSA is its sensitivity to initial conditions,
which may impact its performance. Nonetheless, despite this limitation, GSA has been suc-
cessfully used in other fields and industries, demonstrating its versatility and potential. We
remain confident in the potential of GSA to reduce sound of planetary gear train and look
forward to investigating its performance further in the next chapter.

I.M.S.I 38



CHAPTER 3

IMPLEMENTATION OF GRAVITATIONAL SEARCH
ALGORITHM FOR NOISE REDUCTION IN PLANETARY GEARS

TRAIN

3.1 Introduction

The third chapter focuses on the implementation of the Gravitational Search Algorithm (GSA)
to the problem of noise reduction in planetary gear trains within the realm of conventional
automatic transmissions. To accomplish this, A crucial step is the formulation of a math-
ematical model that accurately describes the planetary gear system. This model includes
several important features, such as design variables, constraints, and objective functions,
which aid in the optimization process. To provide a thorough foundation for this work,
relevant scholarly resources have been used, including Gisbert Lechner’s book "Automatic
Transmissions" [44] along with articles authored by Esmat Rashedi[45], P. A. Simionescu[46],
and Hammoudi Abderazek[47]. These resources contain valuable insights about automatic
transmission systems, teeth-number synthesis, and the optimal design of planetary gear
trains.

Building upon the foundational knowledge, the subsequent section of this chapter ex-
plores the complex mechanisms of conventional automatic transmissions. We can develop
a solid framework for understanding the special issues offered by noise reduction in plane-
tary gears trains by delving into the characteristics, components, and operating principles of
these transmissions. This understanding provides a solid basis for implementing the Grav-
itational Search Algorithm (GSA) optimization strategy into this complex system. By effi-
ciently combining the GSA with traditional automatic transmissions, we may develop im-
proved noise reduction solutions, thereby improving the overall performance and efficiency
of the planetary gears train.

3.2 Conventional Automatic Transmission

A conventional automatic transmission, also known as an "automatic transmission," is a
fully automatic transmission system commonly found in passenger cars. It includes a torque
converter and a planetary gearbox, enabling smooth gear shifting without interrupting power
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delivery. The torque converter acts as a fluid coupling, transferring power from the engine
to the gearbox. The planetary gearbox has multiple gear sets, allowing the transmission to
select the appropriate gear ratio based on the vehicle’s speed and driving conditions. This
system automatically adjusts the gear ratio to optimize performance and fuel efficiency. The
planetary gearbox consists of gear sets that can engage or disengage to achieve different gear
ratios, adapting to various driving conditions such as starting, cruising, or climbing uphill.
Gear changes happen seamlessly, providing a comfortable driving experience without no-
ticeable power interruptions. The Simpson planetary gear-set is advantageous for manu-
facturing due to its symmetrical arrangement and equal number of gearwheels in the input
and output sections, simplifying production and reducing costs. The Ravigneaux planetary
gear-set, widely used in automatic transmissions, consists of two sun gears, multiple planet
gears, and a ring gear, allowing up to four usable forward gears and one reverse gear.

[44]

Figure 3.1: Ravigneaux planetary gear.

3.2.1 The Ravigneaux 3+1 gear transmission

Is a planetary transmission commonly used in automobiles. It has three forward gears and
one reverse gear, with different gear configurations requiring specific clutch and brake acti-
vations.

Table 3.1: Clutch/Brake Activation table

Clutch (C) Brake (B)
Speed C1 C2 B1 B2
First Engage Engage

Second Engage
Third Engage Engage Engage

Reverse Engage

[44]

The table provided represents a Clutch/Brake Activation table, which illustrates the en-
gagement of different clutch and brake components at various speeds and gear steps. There
are two types of brakes commonly used: the belt brake and the multi-disc brake. It is worth
noting that the multi-disc brake shares components with the multi-disc clutch, which con-
nects the moving parts of the transmission together. Hydraulic fluid is used to control the
clutches and brakes mentioned above.
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Figure 3.2: kinematic diagram for ravigneaux 3+1 transmission ratios.[44]Automative transs-
mition

3.2.1.1 Transmission Ratios

The transmission ratios determine the speed and torque relationships between different
gears in the transmission. The following transmission ratios are defined:

First Gear and Reverse Gear: the planet carrier remains stationary, and the transmission
acts as a fixed-axle system. The transmission ratios for these gears can be calculated using
the number of teeth on certain gears. It’s given by:

i1 = N6

N4
, (3.1)

and

iR =−N2N6

N1N3
. (3.2)

Second Gear: The second gear is the only case where the transmission functions as a plan-
etary gear set. The transmission ratios for this gear can be determined by considering the
planet carrier as immobile. Three basic transmission ratios can be defined:

i c
16 =−N2N6

N1N3
, i c

46 =
N6

N4
, i c

14 =−N2N4

N1N3
. (3.3)
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Third Gear: In the third gear, the planet carrier, sun gears, and ring gear rotate together,
providing a direct drive and improving mechanical efficiency,the transmission ratio is :

i3 = 1. (3.4)

3.2.1.2 Optimization Problem

The optimization problem aims to find the optimum number of gear teeth to fulfill the de-
sired transmission ratios. The problem involves finding the minimum or maximum of a
function of various design variables subject to side constraints, inequality constraints, and
equality constraints.

Design Variables: The design variables include the number of teeth for gears 1, 2, 3, 4, 5,
and 6. Additionally, the number of equally spaced, identical planets on the planet carrier is
considered. The module values (m1,m2,m3,m4,m5,m6) can also be design variables with
discrete values according to gear standards.

Objective Function: The objective function measures the departure between the actual
(ik ) and desired (i0k ) transmission ratios. Two common objective functions are defined:
Maximum-error based : given by

f1(N1, .....Nn , p,m j ) = max
k

(wk |ik − i0k |), (3.5)

and
f (x) = R

max
k=1

|ik − i0k |.
Sum of squared residuals : given by

f2(N1, .....Nn , p,m j ) =∑
k

wk (ik − i0)2, (3.6)

is the number of transmission ratios, and the weighting coefficients (wk ) allow adjusting the
importance of different transmission ratios during optimization.

Constraints: Several constraints are imposed on the optimization problem, including gear
teeth constraints, diameter constraints, center-distance constraints, interference constraints,
and spacing constraints for equally spaced planets. These constraints ensure the gears op-
erate properly and do not interfere with each other.

• Gear Size Limitations: The number of teeth on the sun gear (S), ring gear (R), planet
gears (P), and planet carrier (C) should be within the specified permissible ranges. with
ns=2 the number of sun gears, np=3 the number of distinct planet gears (gears 2,3, and
5), and nr=1 the number of ring gears, the lower side constraints have the following
general expressions:

N min
j

≤ N j (1 ≤ j ≤ ns +NP ), (3.7)

where N min
j

(the minimum number of teeth the sun or planet gears can have) are

specified from the condition of undercut avoidance as 17 or if the use of nonstandard
gears is acceptable, 14 even 12 teeth.
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• Maximum Outer Diameter Constraint: The maximum outer diameter of the transmis-
sion, denoted as D max, can be imposed by limiting the standard root diameter of the
ring gear.

m3(N6 +2.5) ≤ D max. (3.8)

• Workspace Diameter Constraints: The outside diameters of planet 2 and idler 5 should
not exceed D max. This can be expressed as inequalities involving the gear teeth num-
bers and module values.

2[m1(N1 +N2)/2+m1(N2/2+1)] ≤ D max, (3.9)

2[m3(N4 +N5)/2+m3(N5/2+1)] ≤ D max, (3.10)

• Coaxial Axes Constraint: The solar and ring gears should have coaxial axes. This can
be expressed as an inequality constraint to ensure that the difference in the standard
center-distances of the gears is less than an average modulus.

|m1(N1 +N2)/2−m3(N6 −N3)/2| ≤ (m1 +m3)/2. (3.11)

• Neighborhood Distance Constraint: The distance between adjacent, non-meshing gears
should be greater than a certain minimum value. This constraint ensures that the teeth
of neighboring gears operate at a sufficient distance.

Figure 3.3: Schematic for calculating distances. [46]
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The distances can be approximated using equations involving gear teeth numbers and
module values.

di j ≥ d min
i j

, (3.12)

where ,(di j )is the distance between the addendum circles of the respective neighbor-
ing wheels. And d min

i j
can be approximated as follows:

d22 = 2

[
m1

N1 +N2

2
sin

(
π

p

)
−m1

(
N2

2
+1

)]
, (3.13)

d33 = 2

[
m3

N6 +N3

2
sin

(
π

p

)
−m3

(
N3

2
+1

)]
, (3.14)

And

d55 = 2

[
m3

N4 +N5

2
sin

(
π

p

)
−m3

(
N5

2
+1

)]
. (3.15)

• Interference Constraint: The interference between planets 3 and 5 should be checked
by evaluating a distance expression. If the distance is less than a certain value, it indi-
cates interference.

d35 =
√

C 2
36 +C 2

45 −2C36C45 cos

(
2π

p
−β

)
−m3

(
N3

2
+1

)
−m3

(
N5

2
+1

)
, (3.16)

where:

β= cos−1

(
C 2

36 +C 2
45 −C 2

35

2C36 +C45

)
,

C36 = m3
N6 −N3

2
,

C45 = m3
N4 +N5

2
,

and

C35 = m3
N3 +N5

2
.

• Lubricant Flow Constraint: The distances between the addendum circles of gear pairs
3-4 and 5-6 should be larger than a certain value to allow for satisfactory lubricant flow.

d34 = m3
N6 −N3

2
−m3

(
N3

2
+1

)
−m3

(
N4

2
+1

)
, (3.17)

d56 = m3

(
N6

2
−1

)
−m3

N4 +N5

2
−m3

(
N5

2
+1

)
. (3.18)
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• Equally Spaced Planets Constraint: The equally spaced identical planets 2-3 constraint
requires that a specific equation involving gear teeth numbers and partial bosic ratios
of the planetary gear is satisfied.

Frac

(
1

p

∣∣∣∣ 1

i c
1−2

− 1

i c
6−3

∣∣∣∣)= ∣∣∣∣ A

N2
+ B

N3

∣∣∣∣ , (3.19)

where

• Frac(...) is the factional part of the expression in parentheses.

A ←− N2/2,

B ←− N3/2,

i c
1−2 =−N2/N1,

i c
6−3 = N3/N6.

• Idler Planets Constraint: An additional assembly condition must be imposed on idler
planets 5, which can be expressed as an equation involving gear teeth numbers.

(N6 −N4)/p = integer. (3.20)

These equations represent the mathematical expressions for the given constraints in
the optimization problem for the Ravigneaux 3+1 gear transmission. The goal is to find
feasible values for the gear teeth numbers (NS , NR , NP ) and the module values (m1, m3)
that satisfy these constraints while optimizing the transmission performance.

3.2.1.3 Numerical results

• The design problem focused on a Chevrolet Corvette manual transmission with a max-
imum outer diameter of 220 mm and specific forward and reverse transmission ratios
(i01 = 3.11, i02 = 1.84, i03 = 1.0, iR = −3.11) although in the original transmission this
was slightly higher, viz. -3.22 .

3.2.2 Key components

Before we embark on our programming environment with MATLAB, it is essential to delve
into the key components of the Gravitational Search Algorithm (GSA). This exploration will
help us gain a deeper understanding of how these components contribute to the algorithm’s
effectiveness. By studying its inner workings, we can acquire valuable insights and appreci-
ate how well-suited it is for implementation in MATLAB.

The key components of the GSA algorithm include:

1. Mass and Position Initialization
In the GSA, each potential solution is represented as a "mass" with an associated po-
sition in the search space. The masses are initially randomly distributed within the
search space.
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2. Calculation of Gravitational Force
The gravitational force is calculated between the masses based on their positions and
masses. The positions and masses of the masses influence the gravitational force act-
ing on them.

3. Update of Acceleration and Velocity
The acceleration and velocity of each mass are updated based on the gravitational
forces acting upon them. This simulates the movement of masses in search of better
solutions.

4. Mass Interaction and Movement
The masses interact with each other, exchanging information and influencing their
movements. The stronger masses exert greater gravitational forces and attract weaker
masses towards them, fostering exploration and exploitation in the search space.

5. Local and Global Best Update
The algorithm maintains the best local and global solutions found so far, updating
them if a better solution is discovered during the search.

By understanding and implementing these key components, we can effectively utilize the
power of the Gravitational Search Algorithm within the MATLAB programming environment.

3.3 Problem Formulation of the Planetary Gear Train

The problem addressed in this paper revolves around the optimization of a planetary gear
train, originally proposed by Simionescu et al. in 2006[46]. The aim is to develop a mathe-
matical model that allows for the efficient determination of optimal design parameters for
the gear train. These design parameters comprise a combination of integers and discrete
values, which directly influence the performance of the gear train.

Specifically, the optimization problem involves nine decision parameters. These param-
eters include the number of teeth for six gears, denoted as N 1, N 2, N 3, N 4, N 5, and N 6.
Additionally, the number of planet gears, referred to as P , and the gear module values, de-
noted as m1 and m2, attre also part of the decision parameters.

Table 3.2: Optimization Problem

Decision Parameter Symbol
Number of teeth for Gear 1 N 1
Number of teeth for Gear 2 N 2
Number of teeth for Gear 3 N 3
Number of teeth for Gear 4 N 4
Number of teeth for Gear 5 N 5
Number of teeth for Gear 6 N 6

Number of planet gears P
Gear module value 1 m1
Gear module value 2 m2

Throughout the subsequent sections of the paper, a comprehensive explanation of the
objective function, constraints, and the limits defining the search space design is provided.
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These aspects play crucial roles in the optimization process and aid in obtaining optimal so-
lutions for the planetary gear train.

Objective: The goal here is to minimize the maximum errors in the gear ratio in order to
reduce vibration noise. According to the mathematical model, the objective function is as
follows:

f (⃗x) = R
max
k=1

|ik − i0k |,

where:

x = (x1, x2, . . . , xR ) represents the design variables,

ik is the calculated gear ratio for the k-th gear,

i0k is the target gear ratio for the k-th gear, and

R is the total number of gears in the gear train.

The specific gear ratios and target gear ratios for each gear are given by:

i1 = N6

N4
, i01 = 3.11,

i2 = N6(N1 ×N3 +N2 ×N4)

N1 ×N3(N6 −N4)
, i02 = 1.84,

iR = N6

N4
, i0R =−3.11,

where N1, N2, N3, N4, N6 are the specific gear parameters.
The objective function seeks to minimize the maximum absolute difference between the

calculated gear ratios and the target gear ratios for each individual gear in the gear train. By
minimizing these errors, the objective is to achieve a more uniform and balanced gear sys-
tem, resulting in reduced vibration noise.

Design constraints:There are eleven design constraints that are applied to the planetary
gear train. The purpose of these constraints is to address the undercutting phenomenon, the
maximum overall transmission diameter, as well as the spacing between multiple planets.
Please refer to [46] for a detailed description of the optimization formulation of the problem.
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g1(⃗x) = m3(N6 +2.5)−220 ≥ 0,

g2(⃗x) = m1(N1 +N6)+m1(N1 +N6)−220 ≥ 0,

g3(⃗x) = m3(N4 +N5)+m3(N5 +2)−220 ≥ 0,

g4(⃗x) = |m1(N1 +N2)−m3(N6 +N3)|− (m1 +m3) ≥ 0,

g5(⃗x) = (N1 +N6)sin

(
π

p

)
−N2 −2−d22 ≤ 0,

g6(⃗x) = (N6 −N3)sin

(
π

p

)
−N3 −2−d33 ≤ 0,

g7(⃗x) = (N4 +N5)sin

(
π

p

)
−N5 −2−d55 ≤ 0,

g8(⃗x) = (N6 −N3)2 + (N4 +N5)2 −2(N6 −N3)(N4 −N5)cos
(
2π/p −β)− (N3 +N5 +2+d35)2 ≤ 0,

g9(⃗x) = N6 −2N3 −N4 −4−2d34 ≥ 0,

g10(⃗x) = N6 −N4 −2N5 −4−2d56 ≥ 0,

h (⃗x) = N6 −N4

p
= integer,

where:

β= cos−1
(
(N6 −N3)2 + (N4 +N5)2 − (N3 +N5)2

)
2(N6 −N3)(N4 +N5)

.

And the variable ranges are:

m1,m3 = {1.75,2.0,2.25,2.5,2.75,3.0},

d22,d33,d55,d34,d35,d56 = 0.5,

17 ≤ N1 ≤ 96,

14 ≤ N2 ≤ 54,

14 ≤ N3 ≤ 51,

17 ≤ N4 ≤ 46,

14 ≤ N5 ≤ 51,

48 ≤ N6 ≤ 124.

3.4 Experimental results and analysis

In this section, several optimization algorithms, namely FA (Firefly Algorithm) proposed by
Yang in 2010, ISA (Improved Shuffled Frog-Leaping Algorithm) presented by Gandomi in
2014 and further improved by Gandomi and Roke in the same year, MVO (Moth-Flame Op-
timization) developed by Mirjalili et al. in 2016, HFPSO (Hybrid Firefly Particle Swarm Op-
timization) introduced by Aydilek in 2018, ReDE (Reformulated Differential Evolution) pro-
posed by Ho-Huu et al. in 2018, and GWO-CS (Grey Wolf Optimization with Chaotic Search)
presented by Abhishek in 2019, were examined to address the problem of designing a 3+1
speed Ravigneaux planetary gear train. It is important to note that the methodologies em-
ployed in this study have not been elaborated on in this particular paper. For a more com-
prehensive understanding of these algorithms, interested readers are encouraged to refer to
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the original works by the respective authors. These optimization algorithms were selected
and utilized in the context of designing a 3+1 speed Ravigneaux planetary gear train. The
aim of the study was to identify the optimal configuration of the gear train that would max-
imize its performance according to predefined objectives and constraints. Each algorithm
was applied to the problem, and the obtained results were analyzed and compared. The
experimental results indicated that the FA algorithm, which is inspired by the behavior of
fireflies, demonstrated promising performance in optimizing the design of the gear train. It
effectively explored the design space and identified a set of optimal solutions. The ISA algo-
rithm, based on the concept of a shuffled frog-leaping process, also exhibited competitive
performance, converging to near-optimal solutions.

The MVO algorithm, inspired by the behavior of moths and flames, showed encourag-
ing results as well. It effectively balanced exploration and exploitation of the design space,
leading to the identification of high-quality designs. The HFPSO algorithm, combining the
principles of firefly and particle swarm optimization, demonstrated good performance by
efficiently exploring the search space and converging to optimal solutions.

The ReDE algorithm, which is a reformulated version of the differential evolution al-
gorithm, provided competitive results by effectively handling the design constraints and
searching for globally optimal solutions. Lastly, the GWO-CS algorithm, which combines
the Grey Wolf Optimization with Chaotic Search, exhibited promising performance in terms
of convergence and solution quality.

Overall, the experimental analysis demonstrated the effectiveness of these optimization
algorithms in solving the problem of designing a 3+1 speed Ravigneaux planetary gear train.
The results obtained from each algorithm showcased their capabilities in exploring the de-
sign space, identifying optimal solutions, and providing valuable insights for improving the
performance of the gear train.

3.4.1 Constraint handling

Two kinds of penalties are used to deal with the constraints of the design. A death penalty
(equation (??)) is used with GSA algorithm.

F (x) = f (x)+λ
(

10∑
i=1

max(0, gi (x))2 +
1∑

j=1
max(0, |h j (x)|−ϵ≤ 0)

)
, (3.21)

where λ is a large positive value, called penalty factor (λ= 1025). The equality constraints
are transformed into inequalities by using a tolerance value ϵ = 1, . . . ,10 and h j , j = 1 are
the number of inequality and equality constraints, respectively. The tolerance value for the
equality constraint is set as 0.0001.

Whereas, FA, MVO, HFPSO, ReDE, and GWO-CS adopt another penalty function which
is introduced by Kaveh and Zolghadr (2014). The mathematical expression of the penalty
function can be expressed as follows:

F (x) = (1+ϵ1 ·Φ(x))ϵ2 · f (x) (3.22)

The value of ϵ1 is equal to 1, and ϵ2 is linearly increased from 1.5 to 6 with iterations
(Kaveh and Zolghadr, 2014). The sum of constraint violation Φ(x) is given by the following
equation:

Φ(x) =
(

10∑
i=1

max
(
0, gi (x)

)+ 1∑
j=1

max
(
0, |h j (x)|−ϵ≤ 0

))
, (3.23)
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ISA implemented Deb’s (Deb, 2000) rules to solve the design constraints of the pedantry
gear problem.

3.4.2 Parameter settings

In this study, the parameter settings were specifically defined for the Gravitational Search
Algorithm (GSA) to facilitate a fair comparison with other optimization methods. The GSA
algorithm was implemented in MATLAB and executed on a PC equipped with an Intel (R)
Core (TM) i7-6600U CPU operating at 2.60x2.81 GHz and 8.0 GB of RAM memory, running
the Microsoft Windows 10 Professional operating system.

To ensure consistency and comparability, the following parameter values were employed
exclusively for GSA:

• Population size (np) = 50

• Maximum number of iterations ( tmax ) = 500.

These specific parameter settings were chosen to create a level playing field when com-
paring GSA with other optimization algorithms used in the study.

Please note that these parameter settings are exclusive to GSA and may differ for the other
algorithms analyzed in the research.

3.4.3 Results and discussions

In this study we have compared the performance of various optimization algorithms, namely
FA, ISA, MVO, HFPSO, ReDE, and GWO-CS, with GSA. The results obtained from these algo-
rithms are presented in Table 2.
Upon examining the results in Table 2, it is evident that ReDE achieves the best value for the
"maximum transmission error" among all the algorithms considered. This implies that ReDE
demonstrates superior performance in reducing noise in planetary gears train, as compared
to the other optimization techniques utilized in this study. It is worth noting that the results
are all relatively close, with values ranging from 0.5255 to 0.5273.
The results achieved using GSA are notable. GSA achieves a transmission error value of
0.5257, which compares favorably to the top-performing algorithms in this investigation.
This demonstrates that GSA is capable of generating good noise reduction results for plan-
etary gears trains. Furthermore, these findings illustrate GSA’s potential as a reliable opti-
mization algorithm for noise reduction in planetary gear trains, and further validate its com-
petitiveness within the existing literature on this subject.

3.4.4 Statistical comparaisons

In this step, a statistical comparison is conducted to evaluate the introduced algorithms
in terms of solution quality, robustness, convergence behavior, and average computational
time. The evaluation is performed over 25 independent runs, both quantitatively and qual-
itatively. The best results obtained from all the runs are summarized in Table 3. The table
clearly demonstrates that all the algorithms utilized in this study successfully find the op-
timal solution without any violations of the constraints. Furthermore, the comparison re-
veals that the ReDE algorithm achieves the lowest transmission error, denoted as f (x∗) =
0.5255886, corresponding to the solution vector x∗ = {33,25,34,32,30,116,4,2.5,1.75}.
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In contrast, the Gravitational Search Algorithm (GSA) produces a slightly higher trans-
mission error, represented as f (x∗) = 0.525714, with the corresponding solution vector x∗ =
{28,20,19,19,15,69,2,2,4}. Despite this marginally higher error, it is important to note that
GSA still achieves a commendable level of performance, demonstrating its capability to find
a solution that is comparable to the best-performing algorithms in the study.

Table 3.3: The best results for the planetary gearbox attained by different optimisers

Implemented optimisation methods

M-H FA ISA MVO HFPSO ReDE GWO-CS GSA

Best value 0.5257 0.5261 0.5273 0.5262 0.5255 0.5257 0.5257

Table 3.4: The best simulated results achieved by used algorithms for the planetary gear train
problem.

Optimisation method

Variables F A ISA M V O HFPSO ReDE G W O-C S GSA

N1 35 29 49 37 33 35 28

N2 26 25 35 22 25 26 20

N3 25 29 32 20 34 25 19

N4 24 24 32 24 32 24 19

N5 21 22 29 26 30 19 15

N6 87 87 116 87 116 87 69

p 3 3 4 3 4 3 4

m1 2 2.5 1.75 2.25 2.5 2 2

m3 2 2.25 1.75 2 1.75 2 2

fmin 0.5257687 0.5261740 0.5273469 0.5262805 0.5255886 0.5257687 0.525714

Note :
The unit of a transmission ratio is dimensionless. It represents the ratio of the input speed
or torque to the output speed or torque in a transmission system. Since it is a ratio, it does
not have any physical units associated with it. The transmission ratio is often expressed as
a decimal or a fraction, indicating how much the output is scaled relative to the input in the
transmission system.

3.4.5 Convergence analysis

In this section, we present a comprehensive convergence analysis of the Gravitational Search
Algorithm (GSA) using three different gravity functions: the dynamic gravity function3.4,
linear GSA3.5, and logsigmoid GSA3.6. The dynamic gravity function was defined as follows:

G =G0 ·exp

(
−α · iteration

max_it

)
,

whereα is set to 20, G0 is set to 70, and iteration represents the current iteration while max_it
denotes the maximum iteration (set to 90 in our experiments). The linear GSA gravity func-
tion is given by:

G =G0 ·
(
1− iteration

max_it

)
,
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with G0 set to 70. Lastly, the logsigmoid GSA gravity function is defined as:

G = G0

1+exp

(
iteration−max_it

2
100

) ,

with G0 also set to 70. Each gravity function was evaluated using a population size of 50
(N = 50) and a dimensionality of 9 (d = 9). The algorithm was run 10 times for each function,
and the best fmin value obtained from each run was recorded. The convergence analysis
primarily focuses on the behavior of the algorithm over iterations, aiming to assess the rate at
which it converges to the optimal solution. We observe that the best fmin values obtained for
the dynamic gravity function, linear GSA, and logsigmoid GSA are 0.5400, 0.5264, and 0.5422,
respectively. Although these values show slight differences, indicating similar performance
across the gravity functions, further investigation is necessary to determine the convergence
rate and stability.
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Figure 3.4: Performance of GSA Using Dynamic Gravity Function.
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Figure 3.5: Linear GSA Performance Analysis.
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Figure 3.6: Logsigmoid GSA Performance.

3.5 Conclusion

In this chapter, we focused on the implementation of the Gravitational Search Algorithm
(GSA) for noise reduction in the planetary gear train of conventional automatic transmis-
sions. Its primary objective was to determine the optimal number of gear teeth that would
meet the transmission ratios while minimizing noise. we attempted to achieve a more bal-
anced and uniform gear system by formulating an objective function that minimizes max-
imum errors in the gear ratios. the implementation involved addressing design constraints
related to undercutting, maximum transmission diameter, and spacing between multiple
planets. These constraints were carefully considered to ensure the feasibility and function-
ality of the optimized gear train designs. By comparing the results obtained from GSA with
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other meta-heuristics, namely FA, ISA, MVO, HFPSO, ReDE, and GWO-CS, we were able to
assess GSA’s performance in reducing noise in planetary gear trains. GSA achieved competi-
tive noise reduction results, with a transmission error value comparable to the top-performing
algorithms in this study, according to the results. This proves GSA’s capability as a reliable op-
timization approach for noise reduction in planetary gear trains.
In conclusion, the Gravitational Search Algorithm (GSA) implementation for noise reduction
in planetary gear trains showed good results. GSA has the potential to enhance automatic
transmission performance by lowering noise levels, thereby benefiting the automotive in-
dustry with quieter and more efficient vehicles.
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CONCLUSION

In this thesis, we focused on the conception of automatic planetary gears trains (PGT) and
employed the power of meta-heuristics(M-H), specifically the Gravitational Search Algo-
rithm (GSA), as an optimization technique inspired by the law of gravity and motion. Our
primary objective was to enhance the efficiency and performance of PGT by minimizing the
maximum errors in gear ratios, thereby reducing vibration noise.

Drawing upon existing research, we established appropriate design parameters and for-
mulated an objective function. By leveraging the intelligent exploration capabilities of GSA,
which emulates the gravitational forces and motions experienced by celestial bodies, we ef-
fectively managed the trade-offs between various performance criteria, converging towards
optimal solutions. Our specific objective was to determine the ideal number of gear teeth
that would fulfill transmission ratios while minimizing noise.

While comparing GSA with other M-H, we found that it yielded notable results, although
it did not achieve the best outcome. Nevertheless, it exhibited good results in minimizing
transmission error, achieving a value of 0.5257. This outcome highlights the effectiveness of
GSA in optimizing automatic PGT configurations, reaffirming its valuable role in the field of
mechanical engineering.

As technology continues to advance, the exploration and refinement of M-H optimiza-
tion algorithms, such as GSA, will undoubtedly play a crucial role in continuously improving
and innovating automatic PGT systems. We hope that the findings of this research contribute
to a broader understanding of gear technology and provide insights into the application of
meta-heuristics in the field.
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