
 

 
 

La sûreté de fonctionnement dans l'ingénierie des 
systèmes complexes 

  
Université d’Oran 2 

Institut de Maintenance et de Sécurité 
Industrielle 

THÈSE 

Pour l’obtention du diplôme de Doctorat « L.M.D » En hygiène et 
sécurité industrielle 

Présentée et soutenue publiquement 
par : 

Chakhrit ammar 
Le 21-06-2022 

Devant le jury composé de : 
LOUNIS ZOUBIDA Professeur Université d’Oran 2 Président 

CHENNOUFI MOHAMMED Maître de conférences A Université d’Oran 2 Encadreur 

AISSANI NASSIMA Maître de conférences A Université d’Oran 2 Examinatrice 

HASSINI ABDELATIF Professeur Université d’Oran 2 Examinateur 

BOUAMRANE KARIM 

CHAKER KADER  

Professeur 

Professeur 

 
                 Année 2021/2022 

Université d’Oran 1 

Ecole National Polytechnique  

 

Examinateur 

Examinateur 

 

 



 

 
 

 

Table des matières 

Figures table 

List of tables 

Acknowledgement 

Introduction General 

1. Problematic ........................................................................................................................... 1 

2. Objectives of the thesis ......................................................................................................... 1 

3. The contribution ................................................................................................................... 2 

4. General plan of the thesis ..................................................................................................... 3 

Chapter I: Literature review on analysis by dependability 

1.1. INTRODUCTION ............................................................................................................. 5 

1.2. Dependability of system .................................................................................................... 5 

1.2.1. Definition of dependability .......................................................................................... 6 

1.2.2. Components of the dependability ................................................................................. 6 

1.2.2.1. Reliability R (t) ......................................................................................................... 6 

1.2.2.2. Availability A(t) ........................................................................................................ 7 

1.2.2.3. Safety......................................................................................................................... 7 

1.2.2.4. Maintainability .......................................................................................................... 7 

1.2.3. The Means to Attain Dependability ............................................................................. 7 

1.3. Concept of System ............................................................................................................. 8 

1.3.1. System definition ......................................................................................................... 8 

1.3.2. Complexity ................................................................................................................... 9 

1.3.3. Features of complex systems ....................................................................................... 9 

1.3.3.1. Emergence ................................................................................................................. 9 

1.3.3.2. Nonlinearity ............................................................................................................. 10 

1.3.3.3. Hierarchical organization ........................................................................................ 10 

1.3.3.4. Robustness and lack of central control .................................................................... 10 



 

 
 

1.4. Systems engineering ........................................................................................................ 11 

1.4.1. Life cycle and development cycle .............................................................................. 11 

1.4.2. Exigencies engineering .............................................................................................. 12 

1.4.2.1. Definition of an exigency ........................................................................................ 12 

1.4.2.2. Role and interest of exigencies engineering............................................................ 12 

1.4.2.3. Expression of exigencies ......................................................................................... 13 

1.4.2.4. Traceability ............................................................................................................. 13 

1.4.2.5. Change of requirements .......................................................................................... 14 

1.5. Risk management ............................................................................................................ 14 

1.5.1. Definition of a risk ..................................................................................................... 15 

1.5.2. Why be interested in risks .......................................................................................... 16 

1.6. Description of risk analysis methods ............................................................................... 16 

1.6.1. Qualitative / Quantitative ........................................................................................... 16 

1.6.1.1. Qualitative methods ................................................................................................ 16 

1.6.1.2. Quantitative methods .............................................................................................. 16 

1.6.2. Statics / dynamics ....................................................................................................... 17 

1.6.2.1. Static methods ......................................................................................................... 17 

1.6.2.2. Dynamic methods.................................................................................................... 17 

1.7. Dysfunctional analysis and assessment ........................................................................... 18 

1.7.1. FMEA / FMECA ........................................................................................................ 18 

1.7.2. Fault Tree Analysis .................................................................................................... 19 

1.7.2.1. Fault Tree Construction........................................................................................... 19 

1.7.2.2. Construction Guidelines .......................................................................................... 20 

1.7.3. Event Tree Analysis ................................................................................................... 23 

1.7.3.1. Event tree methodology .......................................................................................... 24 

1.7.4. Petri Net Analysis ...................................................................................................... 25 

1.7.5. Markov Analysis ........................................................................................................ 26 

1.8. Limitation of risk analysis methods ................................................................................. 28 

1.9. Criteria for choosing a risk analysis method ................................................................... 30 



 

 
 

1.10. Conclusion ..................................................................................................................... 31 

Chapter II: Criticality evaluation in FMECA method of the industrial risks 
2.1. INTRODUCTION ........................................................................................................... 35 

2.2. Multi-criteria decision making approaches (MCDM) ..................................................... 35 

2.2.1. Pairwise comparison methods .................................................................................... 35 

2.2.1.1. The analytic hierarchy process (AHP) .................................................................... 36 

2.2.1.1.1 Steps to Conduct AHP .......................................................................................... 36 

2.2.1.2. Fuzzy Analytic Hierarchy Process .......................................................................... 39 

2.2.2. Distance-based methods (the grey relational analysis (GRA)) .................................. 40 

2.2.2.1 The main procedure of the grey relational analysis ................................................. 40 

2.2.2.1.1 Recognizing Comparative Series .......................................................................... 40 

2.2.2.1.2. Standard series identification ............................................................................... 41 

2.2.2.1.3. Obtain the difference between comparative and standard series ......................... 41 

2.2.2.1.4. Compute the Grey Relationship Coefficient ........................................................ 41 

2.2.2.1.5. Integrate the weighted factors to determine the degree of relation ...................... 41 

2.2.2.1.6.Priority Ranking .................................................................................................... 42 

2.3. Artificial intelligence approaches........................................................................................ 42 

2.3.1. Fuzzy LOGIC ............................................................................................................. 42 

2.3.1.1 Basic Definitions and Terminology ......................................................................... 42 

2.3.1.2 Membership Functions (MF) ................................................................................... 43 

2.3.1.2.1. Triangular Membership Function ........................................................................ 44 

2.3.1.2.2. Trapezoidal Membership Function ...................................................................... 44 

2.3.1.2.3. Gaussian Membership Function ........................................................................... 44 

2.3.1.2.4. Generalized Bell Membership Function .............................................................. 44 

2.3.1.2.5. Sigmoid Membership Function ............................................................................ 45 

2.3.1.3. Linguistic Variables and Fuzzy If-Then Rules ....................................................... 45 

2.3.1.4. Fuzzy Inference Process .......................................................................................... 45 

2.3.1.4.1. Fuzzification ......................................................................................................... 46 

2.3.1.4.2. Apply Fuzzy Operator .......................................................................................... 46 



 

 
 

2.3.1.4.3 Apply Implication Method .................................................................................... 47 

2.3.1.4.4. Aggregate All Outputs ......................................................................................... 47 

2.3.1.4.5. defuzzification ...................................................................................................... 48 

2.3.1.5. Why Use Fuzzy Logic ............................................................................................. 49 

2.3.2. Development of the ANFIS Model and the structure ................................................ 50 

2.3.2.1.ANFIS architecture .................................................................................................. 50 

2.3.2.2. ANFIS Process ........................................................................................................ 52 

2.3.2.2.1. Data collection ..................................................................................................... 53 

2.3.2.2.2. Training Data ....................................................................................................... 53 

2.3.2.2.2.1. Generating FIS Structure ................................................................................... 53 

2.3.2.2.2.2. Training Error.................................................................................................... 54 

2.3.2.2.3. Checking Data ...................................................................................................... 54 

2.3.2.2.3.1. Checking Error .................................................................................................. 55 

2.4. Conclusion ....................................................................................................................... 55 

Chapter III: Traditional methodology of risk assessment in FMECA  
3.1. INTRODUCTION ........................................................................................................... 59 

3.2. LPG storage system ......................................................................................................... 59 

3.2.1. What is LPG? ............................................................................................................. 59 

3.2.2. Properties of LPG ....................................................................................................... 60 

3.2.2.1. Vapour pressure ...................................................................................................... 60 

3.2.2.2. Specific weight of liquid ......................................................................................... 60 

3.2.2.3.Specific weight of vapour. ....................................................................................... 60 

3.2.2.4. Calorific power........................................................................................................ 60 

3.2.3. Uses of LPG ............................................................................................................... 60 

3.3. Identification of the systems to be studied ...................................................................... 61 

3.3.1. LPG Storage zone ...................................................................................................... 61 

3.3.2. Phenomena observed .................................................................................................. 62 

3.3.3. The severity of accidents ............................................................................................ 62 

3.3.3.1. The causes of accidents ........................................................................................... 63 



 

 
 

3.3.3.2. Important safety elements ....................................................................................... 64 

3.4. Traditional FMECA method for criticality evaluation (case study I) ............................. 64 

3.5. Gas turbine ....................................................................................................................... 66 

3.5.1. Gas Turbine Categories .............................................................................................. 67 

3.5.1.1. Aeronautical Gas Turbine ....................................................................................... 67 

3.5.1.2. Electrical Power Generation ................................................................................... 67 

3.5.2. Gas Turbine Configurations ....................................................................................... 67 

3.5.3.Working Principle of a Gas Turbine ........................................................................... 68 

3.5.4. Common Failures in Gas Turbine System ................................................................. 70 

3.5.4.1. Vibration ................................................................................................................. 71 

3.5.4.2. Over temperature ..................................................................................................... 71 

3.5.4.3. Over-speed .............................................................................................................. 72 

3.5.4.4. Stall ......................................................................................................................... 72 

3.5.4.5. Flame Out ................................................................................................................ 72 

3.5.4.6. Flame Leakage ........................................................................................................ 72 

3.5.4.7. Hot Spot on Flame Tube ......................................................................................... 72 

3.5.4.8. Erosion .................................................................................................................... 73 

3.5.4.9. Corrosion ................................................................................................................. 73 

3.6. Traditional FMECA method for criticality evaluation (Gas turbine) ................................. 73 

3.7. CONCLUSION ............................................................................................................... 75 

Chapter IV: Risk evaluation approaches in failure mode and effects analysis 
4.1. Introduction ..................................................................................................................... 78 

4.2. Application of the proposed methodology to the LPG storage system ........................... 79 

4.2.1. Quantification of the various input parameters (Step 1) ............................................ 82 

4.2.2. Fuzzy system Application to evaluate the five partial criticalities (Step 2) ............... 84 

4.2.3. Application of the AHP method to evaluate the overall criticality and improving the 
decision-making (Step 3) ..................................................................................................... 88 

Results analysis .................................................................................................................... 93 

4.3. Application of the proposed methodology to the gas turbine system .............................. 94 



 

 
 

4.3.1. Failure mode analysis by fuzzy methodology ............................................................ 95 

4.3.2. Failure mode analysis by an adaptive neural fuzzy inference system ....................... 98 

4.3.3. Failure mode analysis by Proposed Grey modeling ................................................. 102 

4.3.3.1. Recognizing Comparative Series .......................................................................... 102 

4.3.3.2. Standard series identification ................................................................................ 102 

4.3.3.4. Obtain the difference between comparative and standard series . ........................ 102 

4.3.3.4. Compute the Grey Relationship Coefficient ......................................................... 102 

4.3.3.5. Integrate the weighted factors to determine the degree of relation ....................... 102 

4.3.3.5. 1.Fuzzy Analytic Hierarchy Process ..................................................................... 102 

Results and discussion........................................................................................................ 107 

4.4. Conclusion ..................................................................................................................... 108 

GENERAL CONCLUSION ................................................................................................. 110 

 

 
  



 

 
 

Figures table 
FIGURE 1. 1RELIABILITY DECREASES OVER TIME ....................................................................................... 7 
FIGURE 1.2 DIFFERENCE BETWEEN COMPLICATED SYSTEM AND COMPLEX SYSTEM ...................... 9 
FIGURE 1.3 RISK CRITICALITY ......................................................................................................................... 15 
FIGURE 1.4 EXAMPLE OF A FAULT TREE STRUCTURE ............................................................................... 21 
FIGURE 1.5 FLOW CHART FOR THE SEQUENTIAL PROCEDURE OF FMEA ANALYSIS ........................ 23 
FIGURE 1.6 EVENT TREE DIAGRAM EXAMPLE ............................................................................................. 25 
FIGURE 1.7 EXAMPLE OF A PETRI NET ........................................................................................................... 26 
FIGURE 1.8 EXAMPLE OF A MARKOV GRAPH............................................................................................... 27 
 
FIGURE 2.1 HIERARCHY STRUCTURE OF THE AHP METHOD 37 
FIGURE 2.2 FUZZY TRIANGULAR MEMBERSHIP FUNCTIONS 39 
FIGURE 2. 3 INFERENCE SYSTEMS PROCESS 46 
FIGURE 2.4 FUZZY OPERATOR EXAMPLE 47 
FIGURE 2.5 GLOBAL FUZZY INFERENCE PROCESS 49 
FIGURE 2.6 ANFIS ARCHITECTURE 52 
FIGURE 2.7 THE FLOWCHART  OF THE ANFIS 53 
 
FIGURE 3.1 LPG SPHERE DESIGN ..................................................................................................................... 62 
FIGURE 3.2 CAUSES OF INJURY OR DEATH[85] ............................................................................................ 63 
FIGURE 3.3 BREAKDOWN BY TYPE OF CAUSE-CIRCUMSTANCE ............................................................. 63 
FIGURE 3.4 GAS TURBINE DESIGN[86] ............................................................................................................ 67 
FIGURE 3.5 THE SCHEMATIC OF SIMPLE CYCLE GAS TURBINE POWER GENERATOR ...................... 68 
FIGURE 3.6 THE SCHEMATIC OF COMBINED CYCLE POWER GENERATOR .......................................... 68 
FIGURE 3.7 FUNCTIONAL TREE OF GAS TURBINE. ...................................................................................... 70 

 
Figure 4.1 Flow chart of the proposed approach…………………………………………………........81 
Figure 4.2 Fault tree analysis for “loss of containment in the LPG system’’………………………....83 
Figure 4.3 Membership functions generated for (a) (F), (b) (S) and, (c) (ND) ……………………......86 
Figure 4.4 Fuzzy inference process: case of criticality on equipment………………………………...87 
Figure 4.5 Performance sensitivity graph…………………………………………………….................91 
Figure 4.6 Gradient sensitivity graph for equipment……………………………………........................92 
Figure 4.7 Gradient sensitivity graph for personnel…………………………………………..................92 
Figure 4.8 Membership functions generated for, probability, Severity and non-detection ………….........96 
Figure 4.9 Membership functions of output variable “criticality”………………………........................96 
Figure 4.10 training data………………………………………………………………………………...99 
Figure 4.11 checking data…………………………………………………………………………….....99 
Figure 4.12 Training and checking data errors for the ANFIS model…………………………………100 
Figure 4.13 Flow chart of the proposed approach………………………………………………….......103 

  



 

 
 

List of Tables 
TABLE 1.1PRIMARY DEPENDABILITY ANALYSIS TECHNIQUES IEC-60300-3-1 .......................................................... 17 
TABLE 1.2 TRADITIONAL FAULT TREE EVENT SYMBOLS ........................................................................................... 21 
TABLE 1.3 THE ADVANTAGES AND LIMITATIONS OF THE ANALYTICAL .................................................................... 28 
 
TABLE 2.1AHP COMPARISON SCALE......................................................................................................................... 37 
 
TABLE 3.1PHENOMENA USED AS A BASIS FOR CLASSIFYING ACCIDENTS ................................................................ 62 
TABLE 3.2 SEVERITY RATING                                TABLE 3.3 FREQUENCY RATING ............................... 64 
TABLE 3.4 NON-DETECTION RATING .............................................................................................................. 65 
TABLE 3.5FMECA OF THE LPG SPHERE SYSTEM ......................................................................................... 65 
TABLE 3.6FAILURE MODES OF GAS TURBINE SYSTEM ............................................................................................. 71 
TABLE 3.7 CONVENTIONAL FMECA RESULTS ........................................................................................................... 73 
 
TABLE 4.1 DATA OF LPG SYSTEM COMPONENTS FROM OREDA .............................................................................. 84 
TABLE 4.2 DATA COLLECTION TABLE FOR CRITICALITY CALCULATION .................................................................... 84 
TABLE 4.3CRITICALITIES OBTAINED FROM FUZZY INFERENCE ENGINES .................................................................. 88 
TABLE 4.4 COMPARISON MATRIX FOR CRITERIA ..................................................................................................... 88 
TABLE 4.5THE ARITHMETIC PRIORITY OF JUDGMENTS ............................................................................................ 88 
TABLE 4.6CRITICALITY WEIGHTS FACTORS ............................................................................................................... 89 
TABLE 5 7.COMPARISON MATRIX FOR ALTERNATIVES VERSUS CRITERIA ............................................................... 90 
TABLE 4.8 GLOBAL PRIORITY VECTOR FOR DIFFERENT TYPES OF DECISIONS .......................................................... 91 
TABLE 4.9 CONVENTIONAL FMECA AND FUZZY RPN RESULTS ................................................................................. 97 
TABLE 4.10 NEURO-FUZZY RPN RESULTS ...................................................................................................... 100 
TABLE 4.11FUZZY PAIR WISE COMPARISONS TO CALCULATE WEIGHTS ................................................................ 105 
TABLE 4.12RANKING COMPARISON BETWEEN CONVENTIONAL, FUZZY, ANFIS AND GRA PROPOSED APPROACH .................. 106 

 

  



 

 
 

 في ھندسة النظم المعقدة السلامة التشغیلیة 

 : الملخص

 یعتبر تقییم .إن تكامل التقنیات المختلفة في ھذا العالم الذي یتطور یومًا بعد یوم یؤدي إلى أنظمة مصممة أكثر تعقیدًا مع سلوكیات یصعب التنبؤ  بھا
 یصف ھذا الأخیر ویحلل الآلیات التي تؤدي .أداء الأنظمة الصناعیة ، من البسیط إلى المعقد ، عنصرًا أساسیاً في إدارة الشركات والسلامة التشغیلیة

 العدید من طرق البحث لتجنب أو منع ھذه الأحداث غیر المتوقعة. یتم استخدام طریقة والمؤسسات  طورت الشركات.إلى الحوادث وإخفاقات النظام
تحلیل أنماط الفشل و وآثارھا وخطورتھا بشكل شائع كأسلوب تحلیلي موثوق بھ بشكل استباقي لتحدید وتصنیف وتقلیل ھذه الإخفاقات. ومع ذلك ، في 

كثیر من الحالات ، فإنھ یعاني من بعض أوجھ القصور فیما یتعلق بعملیة صنع القرار والوضع الذي تكون فیھ المعلومات المقدمة غامضة أو غیر 
مؤكدة. الھدف المعروض في ھذه الأطروحة ھو اقتراح نھج فعال یعتمد على المعاییر الھندسیة من أجل تحلیل وتقدیر وتقییم أداء النظام الذي یستجیب 

لجمیع خصائص نظام معقد مثل التطور والتفاعل والسلوك العیاني من أجل تجنب الفشل  وتلبیة القیود المختلفة للسلامة التشغیلیة.  

 اتخاذ القرار ، متعدد المعاییر ، طریقة , تقییم المخاطر, طریقة تحلیل أنماط الفشل و وآثارھا وخطورتھا,  السلامة التشغیلیة: الكلمات المفتاحیة
 .نظام الاستدلال العصبوني الضبابي  ,طریقة التحلیل الھرمي الضبابي , المنطق الضبابي,التحلیل ألعلائقي الرمادي

La sûreté de fonctionnement dans l'ingénierie des systèmes complexes 

Résumé : 

L'intégration de diverses technologies dans ce monde qui se développe de jour en jour fait que les systèmes 
conçus sont plus complexes avec des comportements difficilement à prévoir. L'évaluation de la performance des 
systèmes industriels, du plus simple au plus complexe, est un élément essentiel dans la gestion des entreprises et 
dans la sûreté de fonctionnement. Ce dernier décrit et analyse les mécanismes qui conduisent aux incidents et aux 
défaillances du système. Les entreprises ont développées de nombreuses méthodes de recherche pour éviter ou 
prévenir contre les événements inattendus. L’Analyse des Modes de Défaillances, de leurs Effets et de leur 
Criticité. (FMECA) est couramment utilisée comme technique analytique fiable et proactive pour identifier, 
classer et réduire les défaillances. Cependant, dans de nombreux cas, il souffre de certaines lacunes concernant la 
prise de décision et la situation où les informations fournies sont ambiguës ou incertaines. L'objectif présenté dans 
cette thèse est de proposer une approche efficace basée sur les normes d'ingénierie afin d'analyser, estimer et 
évaluer les performances d'un système qui répond à toutes les caractéristiques d'un système complexe telles que 
l'émergence, l'interaction et son comportement macroscopique afin d'éviter le chaos et de satisfaire les différentes 
contraintes de sûreté de fonctionnement. 

mots clés : sûreté de fonctionnement, AMDEC, Évaluation de la criticité, , Prise de décision, Multicritères, , AHP 
floue, Analyse relationnelle grise, Logique floue, Système d'inférence neuro-floue adaptatif . 

Dependability in the engineering of complex systems 
Abstract : 
The integration of various technologies in this world that is developing day by day means that the systems 
designed are more and more complex with behaviors that are more difficult to predict. The evaluation of the 
performance of industrial systems, from the simple to the complex, is an essential element in the management of 
companies and in the dependability. The latter describes and analyzes the mechanisms that lead to incidents and 
system failures. Companies have evolved many research methods to avoid or prevent these unexpected events. 
Failure mode effect and criticality analysis (FMECA) is commonly utilized as a proactively reliable analytical 
technique for identifying, ranking, and reducing these failures. However, in many cases, it suffers from some 
shortcomings regarding the decision-making and the situation where the information provided is ambiguous or 
uncertain. The objective presented in this thesis is to propose an effective approach based on the engineering 
standards in order to analyze, estimate and evaluate the performance of a system that responds all the 
characteristics of a complex system such as emergence, interaction and its macroscopic behavior in order to avoid 
chaos and satisfy the various constraints of the dependability.  

Keywords: dependability , FMECA, Criticality assessment, ,Decision- making, Multi-criteria, , Fuzzy AHP, Grey 
relational analysis, Fuzzy Logic, Adaptive neuro-fuzzy inference system. 
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General introduction  
1. Problematic 

Industry plays a crucial role in the economies of most countries, contributing (3.8% to 4%) 

of annual world gross domestic product. However, various activities, complex working 

environments, dangerous failures on processes, products, services, or equipment are frequently 

a source of challenge for any organization. To minimize or prevent these undesired 

catastrophes, organizations have created research methodologies. Failure mode, effects, and 

criticality analysis (FMECA) is a proactive quality tool that allows the identification and 

prevention of the potential failure modes of a process or product. However, it proves in a 

variety of applications that the FMECA still has several limitations:  

 It’s difficult to have precise numbers to evaluate the criticality value when failure 

modes are assessed in a complicated system. 

 Due to the lack of a full theoretical understanding of its sources, RPN calculating 

function is frequently questioned. 

 The FMECA with the calculation of a single criticality is insufficient for the 

relevance of decision-making. 

 Various combinations of S, F and ND factors may give a similar RPN value. 

However, the criticality evaluation for the failure modes can be vastly dissimilar 

 In the estimation of RPN, the relative importance of criticality parameters is not 

considered. 

 Another drawback of the classical RPN is the specific evaluation of criticality 

parameters regarding each failure mode. However, because of limited data, time 

pressure, or experts’ information processing abilities are limited, risk parameters 

cannot be specified precisely, and the criticality evaluation information may be 

uncertain or imprecise 

According to the shortcomings cited above we will try in this work to improve the used of 

failure mode, effects and criticality analysis by using new proposed modellings especially 

based on multi-criteria decision making (MCDM), and Artificial intelligence approaches (AI). 

2. Objectives of the thesis 

The main purpose of this work is  to estimate and evaluate the performance that responds 

all the characteristics of a complex system by study the contribution of fuzzy artificial 

intelligence (Adaptive neuro-fuzzy inference system and Fuzzy logic) and multi-criteria 
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decision making methods the grey relational approach (GRA) and fuzzy analytic hierarchy in 

the risk evaluation and prioritizing failures mode and decision makers guidance to refine the 

relevance of decision making in order to reduce the probability of occurrence and the severity 

of the undesirable scenarios with handling different forms of ambiguity, uncertainty, and 

divergent judgments of experts 

The approach has been validated experimentally on operational industrial systems that are: 

a gas turbine and LPG storage system. 

3. The contribution 

The contributions and innovations of our work are summarized as follows:  

a) To avoid the complexity and uncertainty of information, for each failure mode the 

authors replaced the one global criticality calculated from the classical method with a fuzzy 

inference system that offers five different criticalities that efficiently and separately calculate 

the impact of a failure on the environment, personnel, production, equipment, and 

management.   

b) Due to the doubts of the fuzzy system (if-then rules limits) that cannot give a precise 

numerical evaluation of criticality, the calculation of the overall criticality is based on a 

combination between AHP method to calculate the different priorities weights and the five 

partial criticalities calculated by the fuzzy inference system.  

c)our work can not only deal with identification, evaluation, and ranking failure modes as 

it was in previous researches, and not  only deal with the subjectivity and vagueness but also to 

improve the aptitude of decision-making by trying to implement an action plan “preventive –

corrective actions” in order to take priority of these actions and comparing their classifications 

towards each criticality importance (environment, personnel, production, equipment, and 

management) to reduce the frequency of occurrence and the severity of undesirable scenarios 

and safety improvement effectively.  

d) An adaptable neural network-based fuzzy inference system is created to compare and 

validate the results obtained by fuzzy inference system assessment; it's simple to combine both 

numeric and linguistic knowledge in order to solve the fuzzy problem produced. 

e) Different approaches can give different prioritizations, and every approach has its 

disadvantages and advantages. Consequently, the integration of two multi-criteria decision 

methods and incorporating their results enables to instill confidence in decision-makers 
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regarding to the criticality prioritizations results of failure modes, especially when dealing with 

complicated systems. Wherefore, in this work, a novel hybrid approach that combines the grey 

relational approach (GRA) and fuzzy analytic hierarchy process may solve this problem. This 

approach gives an alternate prioritizing for the failure modes and allows overcoming the 

shortcomings concerning the lack of established inference rules which necessitate a good deal 

of expertise, and shows the weightage or importance for the severity, non-detection, and the 

frequency which are considered to have equal importance in the traditional method. 

4. General plan of the thesis 

This thesis decomposed into five chapters organized as follows: 

The first chapter introduced the Preamble of this work. The literature review on 

dependability analysis is the subject of the second chapter. The criticality evaluation in 

FMECA method of the industrial risks is presented in the third chapter, Therefore we propose a 

framework for classifying the reviewed tools and methodology depending upon the failure 

mode evaluation and prioritization. An industrial cases study is presented in the fourth chapter 

to demonstrate the application of conventional FMECA method, the results obtained as a 

summary of this chapter will be used as the prior data for the development and improving the 

classical FMECA method and ameliorating the relevance of decision making in the fifth and 

last chapter by proposing new modeling to assess and prioritization the failures mode of the 

catastrophic scenarios. Finally, we will conclude our work with a conclusion which will 

recapitulate our approaches and our results; this allows highlighting the critiques which open 

an axis to the perspectives for future research around the subject of this thesis. 



 

Chapter I 

Literature review on analysis by dependability 

1.1. Introduction 

Many analysis techniques have been applied by the engineers to assess the system 

dependability during the last four decades. Such techniques are used for the prediction, 

verification, and improvement of dependability properties[1, 2]. The dependability appeared 

relatively recently by comparison with other fields of engineering, from the 1940 in the field of 

aeronautics, followed by the arms industry and the nuclear sector between 1960 and 1970 

following failures in systems. The dependability is a discipline more and more used in 

industrial systems for security control, availability improvement and ensuring reliability while 

taking into consideration the cost notion[3]. In recent years, dependability has acquired 

multiple methods that allow the diagnosis and control of the reliability, availability, 

maintainability and security of systems. They help in answering the questions that are most 

pressing to an engineer, such as: When a shutdown occurs, how long does it take to recover the 

system? Is the system able to provide the service to the user during a given time period? And 

so on. 

Dependability in the engineering field and as well as its development is as a multi-tool 

discipline[4]: 

 Risk analysis methods; 

 Methods of predictive calculations of the safety of systems; 

 Software tools dedicated to safety ; 

 Constitution of statistical databases on the reliability of components. 

After this brief introduction to the development of dependability, this chapter presents the 

overall framework of our developments. We will present the various concepts and definitions 

useful in the dependability of systems, and the various associated bases such as reliability, 

availability, maintainability, safety and then present the approaches and methods most used in 

the study of the dependability of systems.  

1.2. Dependability of system 

The increasing complexity of industrial systems, the reduction of their design and 

operating costs, make dependability an unavoidable domain in the development of any 

industrial system. 
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1.2.1. Definition of dependability 

Dependability is a general notion characterized as the science of failures, risk analysis, or 

reliability, availability, maintainability and security[5-7]. It encompasses the knowledge of 

failures, their evaluation, their prediction and their control. It is characterized by both static and 

dynamic structural studies of systems, 

Dependability is based on: 

 Methods and tools used to characterize and control the effects of hazards, failures 

and errors, 

 The quantification of the characteristics of components and systems to express the 

conformity in time of their behaviors and their actions. 

 Dependability is not only reduced to one of these performances of reliability, 

maintainability, availability and safety, but it is built through all these characteristics[3, 8]. 

1.2.2. Components of the dependability 

Dependability is the measure for the quality of service in time given by the system. It 

encompasses the notions of availability, reliability, safety, maintainability and other more 

specialized attributes. Dependability is defined ‘the ability of the system to deliver a service 

that can be justifiably trusted’ but other definitions are given by international standards 

authorities like ISO. 

1.2.2.1. Reliability R (t) 

It represents the continuity of correct service[9]. It is also defined the probability that it 

performs the required functions under given conditions during for a period of time between 0 

and t, knowing that the entity is not down at time 0 and cannot operate forever, we can consider 

that[10]: 

 R(t) is a non-increasing function varying from 0 to 1 on [0, + ∞ [ 

 0)(lim =
+∞→

tR
t

 

 The unreliability F(t). It is the complement to 1 of reliability, is defined as F(𝑡𝑡)=1-

𝑅𝑅(𝑡𝑡). 

The reliability is a decreasing function of time (Figure 1.1), such that: R (t1)> R (t2) if t1 

<t2. 
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Figure 1. 1Reliability decreases over time 

1.2.2.2. Availability A(t) 

During the system lifetime, just one outage being unacceptable for a reliable system. 

Availability is always required, although to a varying degree depending on the application[11]. 

In the case of a non-repairable component, availability and reliability merge: A(𝑡𝑡)~𝑅𝑅(𝑡𝑡) in the 

opposite case: 𝐴𝐴(𝑡𝑡)≥𝑅𝑅(𝑡𝑡). The unavailability U (t) is the complement to 1 of the availability, is 

defined as: 𝑈𝑈(𝑡𝑡)=1-𝐴𝐴(𝑡𝑡)[12]. 

1.2.2.3. Safety 

Safety distinguishes from availability and reliability for the consequence of the service 

outage, which is ranked according to a severity level. It represents the absence of catastrophic 

consequences in case of failure[13]. 

1.2.2.4. Maintainability 

It is the ability to undergo modifications and repairs between 0 and t. Maintainability is the 

measure of the repair process including fault diagnosis, localization and isolation plus repair or 

replacement[14, 15]. 

 M(t) is a non-decreasing function varying from 0 to 1 on [0,+∞[ ; 

 1)(lim =
+∞→

tM
t

 

1.2.3. The Means to Attain Dependability 

Over the course of the past fifty years many means to attain the attributes of dependability 

have been developed. Those means can be grouped into four major categories[16]:  

• Fault prevention: means to prevent the occurrence or introduction of faults;  
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• Fault tolerance: means to avoid service failures in the presence of faults;  

• Fault removal: means to reduce the number and severity of faults;  

• Fault forecasting: means to estimate the present number, the future incidence, and 

the likely consequences of faults 

Fault prevention and fault tolerance aim to provide the ability to deliver a service that can 

be trusted, while fault removal and fault forecasting aim to reach confidence in that ability by 

justifying that the functional and dependability specifications are adequate and that the system 

is likely to meet them[17]. 

1.3. Concept of System 

1.3.1. System definition 

A system is a set of interdependent components, designed to perform a given function, 

under given conditions and within a given time interval[18-20]. For each system, it is important 

to clearly define the elements that characterize it, namely: function, structure, operating 

conditions, and the environment. 

A system can also be defined an “organized whole in which parts are related together, 

which generates emergent properties and has some purpose”. However, when scoping a 

“problem-system”, besides its parts and purpose, there are two distinctive features to 

consider: 

A system may be open to the influence of its environment (physical, political, social, and 

organizational)? Along this line, there are “Open Systems” that interact with and/or are 

influenced by their environment, versus “Closed Systems” that has no or little interaction with 

the environment (e.g., a turbo engine)[21]. 

With regard to the relationships among system components: There are “Complicated 

system” that may have multiple components, but the relationships among components are more 

of a linear “action-reaction” fashion that is largely predictable. To the contrary, there are 

“Complex Systems” with at least one non-linear relationship between at least one pair of 

components, and such systems are often open systems. The distinction between a complex 

system and a complicated system as shown in Figure 1.2. 
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Figure 1.2 Difference between complicated system and complex system 
 

1.3.2. Complexity 

"Systems exhibit complexity" means that their behaviors cannot be easily inferred from 

their properties[22]. Any modeling approach that ignores such difficulties or characterizes 

them as noise, then, will necessarily produce models that are neither accurate nor useful. As yet 

no fully general theory of complex systems has emerged for addressing these problems, so 

researchers must solve them in domain-specific contexts. Researchers in complex systems 

address these problems by viewing the chief task of modeling to be capturing, rather than 

reducing, the complexity of their respective systems of interest[23]. While no generally 

accepted exact definition of complexity exists yet, there are many archetypal examples of 

complexity[24]. Systems can be complex if, for instance, they have chaotic behavior (behavior 

that exhibits extreme sensitivity to initial conditions, among other properties), or if they have 

emergent properties (properties that are not apparent from their components in isolation but 

which result from the relationships and dependencies they form when placed together in a 

system), or if they are computationally intractable to model (if they depend on a number of 

parameters that grows too rapidly with respect to the size of the system)[25]. 

1.3.3. Features of complex systems 

1.3.3.1. Emergence 

Another common feature of complex systems is the presence of emergent behaviors and 

properties: these are traits of a system that are not apparent from its components in isolation but 

which result from the interactions, dependencies, or relationships they form when placed 

together in a system[26]. Emergence broadly describes the appearance of such behaviors and 

properties, and has applications to systems studied in both the social and physical sciences. 

While emergence is often used to refer only to the appearance of unplanned organized behavior 

in a complex system, emergence can also refer to the breakdown of an organization; it 

describes any phenomena which are difficult or even impossible to predict from the smaller 
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entities that make up the system[27]. One example of a complex system whose emergent 

properties have been studied extensively is cellular automata. In a cellular automaton, a grid of 

cells, each having one of the finitely many states, evolves according to a simple set of rules. 

These rules guide the "interactions" of each cell with its neighbors. Although the rules are only 

defined locally, they have been shown capable of producing globally interesting behavior. 

1.3.3.2. Nonlinearity 

Complex systems often have nonlinear behavior, meaning they may respond in different 

ways to the same input depending on their state or context[27]. In mathematics and physics, 

nonlinearity describes systems in which a change in the size of the input does not produce a 

proportional change in the size of the output. For a given change in input, such systems may 

yield significantly greater than or less than proportional changes in output, or even no output at 

all, depending on the current state of the system or its parameter values. Of particular interest 

to complex systems are nonlinear dynamical systems, which are systems of differential 

equations that have one or more nonlinear terms. Some nonlinear dynamical systems, such as 

the Lorenz system, can produce a mathematical phenomenon known as chaos. Chaos, as it 

applies to complex systems, refers to the sensitive dependence on initial conditions, which a 

complex system can exhibit. In such a system, small changes to initial conditions can lead to 

dramatically different outcomes. Chaotic behavior can, therefore, be extremely hard to model 

numerically, because small rounding errors at an intermediate stage of computation can cause 

the model to generate completely inaccurate output. Furthermore, if a complex system returns 

to a state similar to one it held previously, it may behave completely differently in response to 

the same stimuli, so chaos also poses challenges for extrapolating from experience[28]. 

1.3.3.3. Hierarchical organization 

In complex systems there are often many levels of organization that can be thought of as 

forming a hierarchy of system and sub-system as proposed by Herbert Simon in his famous 

paper `The Architecture of Complexity'. The ultimate result of all the features of complex 

systems above is an entity that is organized into a variety of levels of structure and properties 

that interact with the level above and below and exhibit lawlike and causal regularities, and 

various kinds of symmetry, order and periodic behavior[29]. 

1.3.3.4. Robustness and lack of central control 

The order in complex systems is said to be robust because, being distributed and not 

centrally produced, it is stable under perturbations of the system.  A centrally controlled system 

on the other hand is vulnerable to the malfunction of a few key components. Clearly, while 
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lack of central control is always a feature of complex systems it is not sufficient for complexity 

since non-complex systems may have no control or order at all. A system may maintain its 

order in part by utilizing an error-correction mechanism[30]. 

1.4. Systems engineering 

Systems engineering is an interdisciplinary field of engineering and engineering 

management that focuses on how to design, integrate, and manage complex systems over their 

life cycles[31, 32]. At its core, systems engineering utilizes systems thinking principles to 

organize this body of knowledge. The individual outcome of such efforts, an engineered 

system, can be defined as a combination of components that work in synergy to collectively 

perform a useful function.  Issues such as requirements engineering, reliability, logistics, 

coordination of different teams, testing and evaluation, maintainability and many other 

disciplines necessary for successful system design, development, implementation, and ultimate 

decommission become more difficult when dealing with large or complex projects. Systems 

engineering deals with work processes, optimization methods, and risk management tools in 

such projects[33]. It overlaps technical and human-centered disciplines such as industrial 

engineering, process systems engineering, mechanical engineering, manufacturing engineering, 

production engineering, control engineering, software engineering, electrical engineering, 

cybernetics, aerospace engineering, organizational studies, civil engineering and project 

management. Systems engineering ensures that all likely aspects of a project or system are 

considered and integrated into a whole.  The systems engineering process is a discovery 

process that is quite unlike a manufacturing process. A manufacturing process is focused on 

repetitive activities that achieve high quality outputs with minimum cost and time. The systems 

engineering process must begin by discovering the real problems that need to be resolved, and 

identifying the most probable or highest impact failures that can occur – systems engineering 

involves finding solutions to these problems. 

1.4.1. Life cycle and development cycle 

When dealing with Systems Engineering, it is essential to consider the product 

development cycle and its lifecycle[34, 35]. The best-known development cycle, which first 

appeared in the computer field, is unquestionably the V-cycle. This is made up of 2 branches. 

The descending branch corresponds to an approach of successive refinements which responds 

to the design phase, starting from the general (the expression of needs often through a 
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Functional Specifications) to lead to the particular. The ascending branch, for its part, details 

the phases of integration and validation of the system[36]. 

1.4.2. Exigencies engineering 

A point of System Engineering on which part of our work is focused concerns exigencies 

engineering. This is a very important part of systems engineering, which is in charge of all 

activities related to requirements such as their definition, traceability, modification, 

management in terms of maturity, etc. The following section therefore attempts to present the 

main concepts and interests of these exigencies engineering and begins, first, with the 

definition of a requirement. 

1.4.2.1. Definition of an exigency 

An exigency is a well-formulated expression of need from the customer or any other 

stakeholder related to the system to be developed[37, 38]. It conveys a need in functionality 

(functional requirement) or in quality (non-functional requirement) that must satisfy the 

product that is being designed. Concerning the non-functional requirements, they can 

represent:  

• Global constraints of quality of service,  

• System capabilities (reliability, operability, conviviality, ...), 

• Operational constraints (compliance with usage standards),  

• Design constraints (reuse of existing).  

The main interest of transcribing the needs into exigencies lies in the non-ambiguity that 

must result from their formulation. Moreover, this provides a good communication medium 

between the different project stakeholders who must collaborate. 

1.4.2.2. Role and interest of exigencies engineering 

Managing the exigencies in a project is a fundamental activity for its smooth running. 

Indeed, a large number of documents can be produced when designing a system[39]. Without 

requirements engineering, it would be almost impossible to guarantee the consistency and 

quality necessary for the success of the project. Indeed, statistical studies have shown that 

exigencies are involved in about 40% of the successes or failures of a project, hence their 

importance to our concern. 

Thus, exigencies engineering makes it possible to: 

• collect exigencies, 

• facilitate their expression, 
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• detect inconsistencies between them, 

• validate them, 

• manage their priority (prioritize them), 

• manage changes in exigencies, 

• manage quality, 

• make the link with the rest of the project and / or with the context, 

• And still ensure their traceability. 

Exigencies engineering must also ensure that each exigency is correctly stated, allocated, 

monitored, satisfied, verified and justified. We understand the importance of exigencies 

engineering in a project, to its success, and therefore to ensuring that the designed system will 

meet the needs and perform as intended. Any deviation from compliance with the exigencies 

may be the cause of undesired operation, hence the link with our problem. 

In particular, we saw the importance of the requirements related to interfaces, which are 

still too often the cause of design problems, and therefore delays and additional costs. Below, 

we will focus on three major aspects of the engineering of exigencies: the expression of 

exigencies, traceability and change of exigencies. 

1.4.2.3. Expression of exigencies 

A good expression of exigencies is a key point for the success of a project[40]. Any 

ambiguity or oversight at this level will be a source of further complication, which may of 

course result in delays, additional costs, penalties, etc. We must ensure that the interpretations 

that can be made by the different stakeholders are the same. To do this, use simple terms and 

avoid ambiguous or vague terms. It is also recommended to attach standard diagrams or 

models that can clarify the requirement as soon as possible. (We recall here the well-known 

adage: “a good diagram is better than a long speech”.) Besides the very formulation of the 

“need” expressed through the exigency, to this one can also be associated other attributes such 

as: the type (primary or derived), the level of compliance (mandatory, advice or information), 

the priority, the scope (requirement on the system itself or the program) or the state (verified, 

validated …). All this information is important and must be kept up to date. 

1.4.2.4. Traceability 

Exigencies traceability is the most important concept in exigencies engineering. It allows 

you to easily know the origin of the exigencies, as well as all the links between the exigencies 

themselves or between the exigencies and the rest of the project or the context (user needs, 
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implementation, tests, etc.)[41]. Traceability is cited as a quality factor of good design. First of 

all in order to describe the connections between the different levels of exigencies, it presents a 

set of advantages that allow: 

• to show more easily that the design satisfies the exigencies and to help quickly 

identify which requirements are not satisfied by the solution (in other words: to 

verify / validate the proposed solution), 

• Never lose any justification vis-à-vis design choices,  

• to facilitate and control the evolution of the system in the future, 

• Understand the impact of a change in exigencies and facilitate the consideration of 

changes. 

1.4.2.5. Change of requirements 

Changing requirements is an integral part of requirements engineering. It is then necessary 

to guarantee traceability, as we have just explained above. Poorly monitored, the change in 

requirements has often been the source of serious design problems. These lead to delays and 

additional costs that are detrimental to the survival of the company, and even to major system 

malfunctions affecting the security of property and / or people. Good requirements engineering, 

with full traceability where all the necessary information is present, should make it possible to 

analyze and take into account the impact of changes in requirements. Changes which are 

becoming more and more inevitable, on the one hand, due to the complexity of the systems 

which requires initial assumptions to be reviewed and adjusted later in the development, on the 

other hand, due to the arrival new technologies or more simply because of the rapid evolution 

of the current market. Another important aspect that further complicates the task of 

requirements engineering is that multiple stakeholders and different design actors are involved 

to define and address requirements. Behind this idea, there is the notion of collaborative work, 

and therefore collaborative management of requirements. This is the subject of much work and 

constitutes a field of research in its own right.  

1.5. Risk management 

Risk management is an important activity for the smooth running of the design project[42, 

43]. It is a system engineering activity that we must present, given our problem, which requires 

risk management. Thus, in this section, we first give the definition of a risk and we justify the 

interest of the risk study. Then we present the strategies and tools of risk management. 
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1.5.1. Definition of a risk 

A risk is a potential loss or degradation, identified and often quantifiable[44, 45]. It is a 

more or less predictable possible danger that can affect the outcome of the project. It is 

necessarily linked to a situation or an activity and is associated with the probability of the 

occurrence of an event or a series of events. It can be characterized by a two-dimensional 

quantity. Figure 1.3 illustrates this characteristic: 

 
Figure 1.3 Risk criticality 

In this Figure 1.3, we can already identify the risk reduction strategy which consists of 

reducing its probability of occurrence (prevention) and / or reducing its severity (protection) to 

make the risk acceptable. In fact, the first scientific definition of risk was given in 1738 by 

Daniel Bernoulli in “Specimen theoriae novae de mensura sortis”[46]: “risk is the 

mathematical expectation of a function of probability of events”. More simply, it is the average 

value of the consequences of events weighted by their probabilities. In this definition, we find 

the notion of probability and the severity through the representative value of the consequences 

of events. But other elements are to be associated with the risks such as: the consequences 

themselves, the risk management strategy, the tool used to apply the strategy, and of course the 

factor or factors of the appearance of the risk[47]. 
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1.5.2. Why be interested in risks 

Taking risks into account is essential for good project management. Indeed, they can be 

responsible for the failure of the project or, at the very least, for a not insignificant increase in 

the cost or the time of development. Taking an interest in the risks would therefore help to 

avoid these kinds of problems. This would reduce the number and cost of accidents, prevent 

disabling or fatal accidents, or more simply avoid customer dissatisfaction[48]. 

From a global point of view, we can identify two main families of risks: 

 The risks present during the operation of the system and directly related to the 

system and its operation. Typically, these are the risks that dependability will treat. 

For example, there are those relating to a failure of a subsystem or a component, or 

those relating to the protection of persons using the system. 

 Risks linked to the project or to the development itself. They do not intervene 

directly in the dependability of the system. On the other hand, they can be the 

source of risks of the first type. As an example, we can cite the risk due to the delay 

of a supplier or that caused by encountering a technical difficulty greater than 

expected in the development phase. This in both cases could result in a delay in the 

completion of the design, possibly accompanied by greater pressure on the 

development managers which can be a factor in the increase in the number of 

design errors (from where the link with the risks associated with the system and 

dependability). 

1.6. Description of risk analysis methods 

1.6.1. Qualitative / Quantitative 

1.6.1.1. Qualitative methods 

It enumerates all failure mechanisms in the system and their consequences. A qualitative 

analysis is appropriate when there isn’t enough time, money, the lack of data may be due to the 

uniqueness of a particular risk, which could include unusual threats or vulnerabilities, or a one-

of-a-kind asset. 

1.6.1.2. Quantitative methods 

It uses available relevant and verifiable data to produce a numerical value which is then 

used to predict the probability (and hence, acceptability) of a risk event outcome. 
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1.6.2. Statics / dynamics 

1.6.2.1. Static methods 

It allow to analyze the system from a structural point of view without taking into account 

the evolutions in the course of time and are based on a Boolean mathematical model of the 

system. For instance, the combinations of failures leading to the dysfunction of the system but 

without representing the temporal interrelations which affect it. 

1.6.2.2. Dynamic methods 

A list of the primary techniques, recommended by the international standard (IEC-60300-

3-1 2003) for the dependability assessment, is shown in Table 1.1: 

Table 1.1Primary dependability analysis techniques IEC-60300-3-1 

Technique Other standards Qualitative/ quantitative 

Event Trees Analysis 
(ETA) 

IEC-62502 (2010) Qualitative Quantitative 

Failure Mode and Effect 
Analysis (FMEA) 

IEC-60812 (1985), MIL-
STD-1629a (1980), 

ANSI/IEEE-STD-352 
(1987), SAE-ARP-4761 

(1996); BS-5760-5 (1991) 

Qualitative 

Failure Mode, Effect, and 
Criticality Analysis 

(FMECA) 

IEC-60812 (1985); MIL-
STD-1629a (1980); BS- 

5760-5 (1991) 

Qualitative 

Fault Trees Analysis (FTA) IEC-61025 (2006), 
ANSI/IEEE-STD-352 

(1987), 

SAE-ARP-4761 (1996) 

Qualitative Quantitative 

Functional Failure Analysis 
(FFA) 

SAE-ARP-4761 (1996) Qualitative 

Hazard and Operability 
studies (HAZOP) 

IEC-61882 (2001) Qualitative 

Markov analysis IEC-61165 (2006), 
ANSI/IEEE-STD-352 

Qualitative Quantitative 
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(1987) 

Petri Net analysis (PN) ISO/IEC-15909-1 (2004) Qualitative Quantitative 

Preliminary Hazard 
Analysis (PHA) 

MIL-STD-882c (1993), 
MIL-STD-882d (2000) 

Qualitative 

Reliability Block Diagrams 
analysis (RBD) 

IEC-61078 (2006), 
ANSI/IEEE-STD-352 

(1987) 

Qualitative 

 

1.7. Dysfunctional analysis and assessment 

The methods used for dysfunctional analysis come in various forms: tabular forms, tree 

structure, networks, and graphs. 

1.7.1. FMEA / FMECA 

Failure Mode and Effect Analysis (FMEA) is an inductive analysis technique used to study 

the effects of component failure modes on a system[49, 50]. FMEA starts from knowledge of 

component failure modes and considers the effects of each failure on sub-systems and the 

system. It implies the study of all the components in a system and is often applied to higher-

level assemblies and systems. FMEA helps to check whether the components, with their known 

failure modes, fulfill system level safety requirements. The results of the FMEA may be to 

accept the proposed components or, perhaps, to issue recommendations for maintenance 

checks, or to ask for components to be replaced. It is common to use FMEA to determine the 

presence or absence of single points of failures in a system design. FMEA is basically a 

qualitative technique; Failure Mode, Effect and Criticality Analysis (FMECA) extends FMEA 

by introducing a criticality analysis to verify whether failure modes with severe effects have 

sufficiently low occurrence probability. Both the techniques produce tabular outputs[51, 52]. 

Figure 1.5 shows the flow chart revealing general procedure for carrying out FMEA 

process. In brief, the ten steps involved are as described as follows: 

(1) Define the scale Table of Severity, Occurrence, and Detect.  

(2) Studies intent, purpose, goal, objective of a product/process. Generally, it is identified 

by interaction among components/process flow diagram followed by task analysis.  

(3) Identify potential failures of product/process; this includes problems, concerns, and 

opportunity of improvement. 
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(4) Identify consequence of failures to other components/next processes, operation, 

customers and government regulations. 

(5) Identify the potential root cause of potential failures.  

(6) First level method/procedure to detect/prevent failures of product/process.  

(7) Severity rating: rank the seriousness of the effect of the potential failures. 

(8) Occurrence rating: estimation of the frequency for a potential cause of failures. 

(9) Detect rating: likelihood of the process control to detect a specific root cause of a 

failure. 

(10) RPN calculation: product of the three inputs rating; severity, occurrence, detect. 

(11) Correction. Back to (2) if available. 

(12) End. 

1.7.2. Fault Tree Analysis 

The FTA is a systematic top-down method which starts from an assumption of a system 

failure followed by identification of the modes of system or component behavior that has 

contributed to this failure. These modes of system or component are not confined to hardware 

or software but include other factors such as human factors or interaction[53]. FTA is 

particularly useful when quantitative data on probability is available although qualitative 

analysis can also be performed. In either case, an FTA can pinpoint common factors or the 

factors that are the highest contributor of system failure. This is not as readily identifiable using 

other risk analysis techniques such as FMECA. Its visual representation of the causes of the 

failure allows easy identification of a single fault event (a single failure that triggers a complete 

system failure)[54]. Where quantitative data is available, the probability of failures can be 

anticipated through mathematical calculations. The FTA is comprised of a top event and a 

series of symbols, events, and logic gates for the construction of the tree. Some of the symbols 

commonly used in an FTA are shown in Table 1.2. Refer to IEC 61025 for more symbols used 

in an FTA. For complicated systems, the FTA diagram may become very large when the 

system failure is at a very high level. For example, a top event such as “system no response” in 

an electrical device may be due to numerous causes. In the absence of software to track the 

FTA, it is more practical to consider intermediate undesirable events such as “input power cut” 

or “transformer failure.” This also allows different functional teams to work on various aspects 

of the FTA before combining at a later stage. 

1.7.2.1. Fault Tree Construction 
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FTA is a deductive technique where we start with the failure scenario being considered, 

and decompose the failure symptom into its possible causes. Each possible cause is then 

investigated and further refined until the basic causes of the failure are understood. The failure 

scenario to be analyzed is normally called the TOP event of the fault tree. The basic causes are 

the basic events of the fault tree. The fault tree should be completed in levels, and they should 

be built from top to bottom. However, various branches of a fault tree can be built to achieve 

different levels of granularity[55, 56]. 

1.7.2.2. Construction Guidelines 

To achieve a consistent analysis, the following steps are suggested for constructing a 

successful fault tree model:  

1) Define the undesired event to be analyzed. The description of it should provide answers 

to the following questions:  

a. What: describe what type of undesired event is occurring  

b. Where: describe where the undesired event occurs 

c. When: describe when the undesired event occurs  

2) Define boundary conditions for the analysis, including 

 a. Physical boundaries: define what constitutes the system, i.e. which parts of the system 

will be included in the FTA. 

 b. Boundary conditions concerning environmental stresses: define what type of external 

stresses (e.g., earthquake and bomb) should be included in the fault tree.  

c. Level of resolution: determine how far down in detail we should go to identify the 

potential reasons for a failed state.  

3) Identify and evaluate fault events, i.e., contributors to the undesired TOP event: if a 

fault event represents a primary failure, it is classified as a basic event; if the fault event 

represents a secondary failure, it is classified as an intermediate event that requires a further 

investigation to identify the prime causes.  

4) Complete the gates: all inputs of a particular gate should be completely defined before 

further analysis of any one of them is undertaken (complete-the-gate rule). The fault tree 

should be developed in levels, and each level should be completed before any consideration is 

given to the next level. 
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Figure 1.4 Example of a fault tree structure 

 

 

Table 1.2 Traditional Fault Tree Event Symbols 
The primary event 
symbols 

Event  and gate symbols 

 

Description 

Basic event 

 

failure or error in a 
system component or 

element 

External event 

 

An event that is 
normally expected to 

occur. In general, 
these events can be 
set to occur or not 

occur (i.e., they have 
a fixed probability of 

0 or 1). 

Undeveloped event 

 

An event which is no 
further developed. It 
is a basic event that 

does not need further 
resolution. 
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Conditioning event 

 

conditions that 
restrict or affect logic 
gates (example: mode 
of operation in effect) 

OR gate 

 

the output occurs if 
any input occurs. 

AND gate 

 

the output occurs 
only if all inputs 
occur (inputs are 

independent). 
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Figure 1.5 Flow chart for the sequential procedure of FMEA analysis 

 
 

1.7.3. Event Tree Analysis 

Event Tree analysis (ETA) is an inductive technique used to evaluate the consequences of 

an initiating event and the probability of each of the possible sequences that can occur. The 

Event Tree (ET) is a logical structure suitable to model the consequences of the initiating event 

(e.g., a node breakdown), identifying the states (success or unsuccess) of all the mitigation 

systems; the result is a set of different possible scenarios, each associated with an occurrence 
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probability[57]. The Fault Tree analysis is generally used to calculate the probabilities of event 

occurrences. Indeed, each event (branch) in the ET can be interpreted as the top event of an FT: 

the value thus computed represents the conditional probability of the occurrence of the event, 

given that the events which proceed on that sequence have occurred. Multiplication of the 

conditional probabilities for each branch in a sequence gives the probability of that sequence. 

In the case of structural dependencies it is possible to combine ET and FT techniques in a 

profitable way, linking one FT to each ET branch. This combined technique is called ET with 

boundary conditions and consists in decomposing the system so as to identify the supporting 

part or functions upon which some components and systems are simultaneously dependent. 

The supporting parts thereby identified appear explicitly as system event tree headings, 

preceding the dependent protection systems and components. Since the dependent parts are 

extracted and explicitly treated as boundary condition in the ET, all the conditional 

probabilities are made independent and the probability of the accident sequences can be 

computed by simple multiplications[58]. 

1.7.3.1. Event tree methodology 

The overall goal of event tree analysis is to determine the probability of possible negative 

outcomes that can cause harm and result from the chosen initiating event. It is necessary to use 

detailed information about a system to understand intermediate events, accident scenarios, and 

initiating events to construct the event tree diagram. The event tree begins with the initiating 

event where consequences of this event follow in a binary (success/failure) manner. Each event 

creates a path in which a series of successes or failures will occur where the overall probability 

of occurrence for that path can be calculated. The probabilities of failures for intermediate 

events can be calculated using fault tree analysis and the probability of success can be 

calculated from 1 = probability of success (ps) + probability of failure (pf). The event tree 

diagram models all possible pathways from the initiating event. The initiating event starts at 

the left side as a horizontal line that branch vertically. As shown in figure 1.6, the vertical 

branch is representative of the success/failure of the initiating event[59, 60].  

Steps to perform an event tree analysis: 

1. Identify (and define) a relevant accidental (initial) event that may give rise to unwanted 

consequences  

2. Identify the barriers that are designed to deal with the accidental event 

 3. Construct the event tree 

 4. Describe the (potential) resulting accident sequences  

https://en.wikipedia.org/wiki/Fault_tree_analysis
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5. Determine the frequency of the accidental event and the (conditional) probabilities of 

the branches in the event tree  

6. Calculate the probabilities/frequencies for the identified consequences (outcomes)  

7. Compile and present the results from the analysis 

 
Figure 1.6 Event tree diagram example 

 
1.7.4. Petri Net Analysis 

A Petri net, also known as a place/transition (PT) net, is one of 

several mathematical modeling languages for the description of distributed systems. It is a class 

of discrete event dynamic system. A Petri net is a directed bipartite graph that has two types of 

elements, places and transitions, depicted as white circles and rectangles, respectively. A place 

can contain any number of tokens, depicted as black circles. A transition is enabled if all places 

connected to it as inputs contain at least one token[9, 61]. 

https://en.wikipedia.org/wiki/Mathematical
https://en.wikipedia.org/wiki/Modeling_language
https://en.wikipedia.org/wiki/Distributed_systems
https://en.wikipedia.org/wiki/Discrete_event_dynamic_system
https://en.wikipedia.org/wiki/Bipartite_graph
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A Petri net consists of places, transitions, and arcs. Arcs, specifying the interconnection of 

places and transitions thus indicating which objects are changed by a certain activity. The 

places from which an arc runs to a transition are called the input places of the transition; the 

places to which arcs run from a transition are called the output places of the transition. 

Graphically, places in a Petri net may contain a discrete number of marks called tokens. Any 

distribution of tokens over the places will represent a configuration of the net called a marking. 

In an abstract sense relating to a Petri net diagram, a transition of a Petri net may fire if it 

is enabled, i.e. there are sufficient tokens in all of its input places; when the transition fires, it 

consumes the required input tokens, and creates tokens in its output places. A firing is atomic, 

i.e. a single non-interruptible step. 

Consider Figure.1.7 p1 is a place marked with one token and is connected to transition t1. 

Because of the direction of the arc connecting p1 and t1 we will call p1 an input place of t1 and 

t1 accordingly an output transition of p1. Places and transitions might have several input/output 

elements. E.g., place p2 has three input transitions: t1, t3, t5, while t4 has two output places: p4 

and p5. The latter is marked with two tokens. p6 and t7 are not interconnected to any other 

element. Such elements will be called isolated places or transitions respectively. As expected, 

isolated elements of a Place-Transition net do not influence the rest of the net and therefore we 

can neglect them.  

 
Figure 1.7 Example of a Petri net 

 
 

1.7.5. Markov Analysis 

Markov analysis is a stochastic technique that enables to specify the dependence of failure 

or repair characteristics of individual components on the state of the system. It is a technique 

suitable for the dependability evaluation of complex system structures and complex repair and 

https://en.wikipedia.org/wiki/Graph_theory
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maintenance strategies. It should be observed that Markov analysis often represents the basis of 

some previously introduced formalism. The simplest Markov model is a Markov chain, which 

is a Markov process with a discrete state space. A Markov chain can be defined for a discrete 

set of times (i.e., discrete-time Markov chain-DTMC) or for time taking nonnegative real 

values (i.e., continuous time Markov chain-CTMC). For dependability applications, the normal 

reference model is the CTMC[62]. 

 Let Z (t) is a stochastic process defined over the discrete state space. Z(t) is a CTMC if, 

given any ordered sequence of time instants (0 < t1 < t2 <… < tm), the probability of being in 

state x(m) at time tm depends only on the state occupied by the system at the previous instant of 

time tm-1 and not on the complete sequence of state occupancies. This property, which is 

usually referred to as the Markov property can be rephrased by saying that the future evolution 

of the process only depends on the present state and not on the past. Formally, the Markov 

property may be written as: 
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Figure 1.8 Example of a Markov graph 
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1.8. Limitation of risk analysis methods 

Table 1.3 presents the advantages and limitations of the analytical methods selected to 

develop our research work. 

Table 1.3 the advantages and limitations of the analytical 
Method limitations advantages 

FMECA • It requires a hierarchical 
system drawing as the 
basis for the analysis, 
which the analyst usually 
has to develop before the 
FMEA process can start 

• It is optimized for 
mechanical and electrical 
equipment, and does not 
apply easily to Human 
Factor Integration, 
procedures or process 
equipment 

• It is difficult for the 
technique to cover 
multiple failures as 
equipment failures are 
generally analyzed one by 
one therefore important 
combinations of 
equipment failures may be 
overlooked 

• Most accidents have a 
significant human or 
external influence 
contribution and these are 
not a usual failure mode 
with FMEA 

• More than one FMEA 
may be required for a 
system with multiple 
modes of operation 

• Due to its wide use there 
can be temptation to read 
across data from ARM or 
ILS projects where, for 
example, the fault-tree 
technique has been used. 
As a consequence, the 
safety perspective can be 
lost as human error has 

• It is widely-used and well-
understood, and easy to 
understand and interpret 

• It can be performed by a 
single analyst, or more if 
required 

• Qualitative data about the 
causes and effects can be 
incorporated into the 
analysis 

• It is systematic and 
comprehensive, and 
should identify hazards 
with an electrical or 
mechanical basis 

• The level of detail 
incorporated can be varied 
to suit the analysis 

• It identifies safety-critical 
equipment where a single 
failure would be critical 
for the system 

• Even though the technique 
can be quite time 
consuming it can lead to a 
thorough understanding of 
the system being 
considered 
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been excluded and the 
focus has been solely on 
determining faults and on 
not on more far-reaching 
safety issues 

• Perhaps the worst 
drawback of the technique 
is that all component 
failures are examined and 
documented, including 
those, which do not have 
any significant 
consequences. 

• For large systems, 
especially those with a 
fair degree of redundancy 
built into them, the 
amount of unnecessary 
documentation is a major 
disadvantage. Hence, the 
FMECA should primarily 
be used by designers of 
reasonably simple 
systems. It should 
however be noted that the 
concept of the FMECA 
form can be quite useful 
in other contexts, e.g. 
when reviewing an 
operation rather than a 
hardware system. Then 
the use of a form similar 
to the FMECA can 
provide a useful way of 
documenting the analysis. 
Suitable columns in the 
form could for example 
include; operation, 
deviation, consequence, 
correcting or reversing 
action, etc. 

FTA • The diagrammatic format 
discourages analysts from 
stating explicitly the 
assumptions and 
conditional probabilities 
for each gate. This can be 
overcome by careful back-

• It is suitable for 
considering the many 
hazards that arise from a 
combination of adverse 
circumstances  

• It allows for the 
identification of common 
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up text documentation.  
• FTA can be come time-

consuming and 
complicated for large 
systems 

• The technique examines 
only one specific top 
event. Additional FTAs 
must be developed to 
analyze other top events  

• Analysts may overlook 
failure modes and fail to 
recognize common cause 
failures (i.e. a single fault 
affecting two or more 
safeguards) unless they 
have a high level of 
expertise and work jointly 
with the operator  

• Manual FTA assumes all 
events are independent 
however the more 
sophisticated computer 
software packages can 
cater for the combination 
of events  

• Due to its wide use there 
can be temptation to read 
across data from ARM or 
ILS projects where, for 
example, the fault-tree 
technique has been used. 
As a consequence, the 
safety perspective can be 
lost as human error has 
been excluded and the 
focus has been solely on 
determining faults and on 
not on more far-reaching 
safety issues 

mode or common cause 
failures which may not be 
apparent when 
considering sub-systems 
in isolation  

• It is often the only 
technique that can 
generate credible 
likelihoods for novel, 
complex systems  

• Human errors can be 
included in the analysis  

• It can be used both 
qualitatively and 
quantitatively depending 
on what is required from 
the analysis 

• It a clear and logical form 
of presentation to non-
specialist users provided 
an appropriate of the tree 
is used. 

• The technique is widely 
used and well accepted 
and can be used for cross-
discipline system analysis 

1.9. Criteria for choosing a risk analysis method 

We have retained most of the criteria weighing in the implementation of one method rather 

than another in the study of a given system: 

 Field of study. 

 Study stage (specification, design... dismantling). 
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 Perception of risk in this field. 

 Organizational dependability culture. 

 Characteristics of the problem to be analyzed. 

 Envisaged level of security demonstration. 

 Nature of the information available (specifications of the system and its interfaces, 

constraints, etc.). 

 Experience feedback and database available. 

 Human, logistical and other resources. 

 Deadlines and other project management constraints. 

However, the separate use of a single risk analysis method may not provide a definitive 

demonstration of the achievement of safety objectives. Indeed, it is necessary to combine 

several methods for better completeness and good consistency in terms of results. 

1.10. Conclusion 

In the context of this chapter, we have introduced precise definitions characterizing the 

various attributes of systems dependability. A major strength of the dependability concept, as it 

is formulated in this chapter, is its integrative nature, that enables to put into perspective the 

more classical notions of reliability, availability, safety, maintainability, that are then seen as 

attributes of dependability. Then we have tried to better situate the approaches and methods of 

risk analysis; we first clarified the reasoning techniques for predictive risk analysis where we 

presented the difference between the methods qualitative / quantitative and static / dynamic. 

Then, the methods most used in the analysis of dependability were defined with the process of 

their operations. After the identification of the advantages and limitations of the analysis 

methods chosen for the development of our research work, we found it interesting to then 

propose the criteria for choosing a risk analysis method. 

In the following chapter we will try to classify the existing category which applied 

different methods to enhance FMECA performance and provide a direction for our research so 

as to further solve the known deficiencies of the traditional FMECA. 

 



 

Chapter II 

Criticality evaluation in FMECA method of the 
industrial risks 

2.1. INTRODUCTION 

The industrial risk problematic and the diversification of risk types have increased 

consequently with the industrial development. In the same time, the risk acceptability threshold 

of the population has decreased. In response to this preoccupation, competent authorities and 

industrialists have developed methodologies and tools for risk prevention and protection, as 

well as crisis management. To face up to major accidents, a previous analyze should be done. 

The forward-looking risk analysis allows doing an exhaustive identification of potential 

hazardous sources to prevent accident scenarios and to assess potential impact on human, 

environmental and equipment targets in order to propose prevention or protection. The risk 

analysis methodologies focus on the main hazard sources. 

Vast majority of risk priority models are found in the literature to improve the criticality 

analysis process of FMECA. Therefore we propose a framework for classifying the reviewed 

tools and methodology depending upon the failure mode evaluation and prioritization, we 

divide the methods used in into two main categories which are multi-criteria decision making 

(MCDM), and Artificial intelligence approaches (AI). 

2.2. Multi-criteria decision making approaches (MCDM)  

As a well-known branch of operation research, the MCDM methods have been extensively 

used by researchers to improve the performance of FMECA and are considered as a valuable 

tool in handling the drawbacks related to the conventional RPN method. According to the 

MCDM methods employed in the determination of risk priority of failure modes in FMECA 

we adopted on the pair wise comparison methods (AHP) and the grey relational analysis 

(GRA) Distance-based methods[63, 64]. 

2.2.1. Pairwise comparison methods 

As a pairwise comparison MCDM method, the analytic hierarchy process (AHP) (Saaty, 

1977 and 1980) is a one of the multiple criterion evaluation methodology that is both 

descriptive and prescriptive. The Analytic Hierarchy Process (AHP) is, in many ways, similar 

to Multi Attribute Utility Theory. However, unlike MAUT, AHP does not prescribe that 

judgments be perfectly consistent, nor does it prescribe when or when not to allow for rank 
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reversals. AHP allows the decision makers to decide how much inconsistency is reasonable, if 

any, and whether nor not rank reversal (a reflection of relative rather absolute worth) should be 

permitted. 

2.2.1.1. The analytic hierarchy process (AHP) 

Analytical Hierarchy Process is one of the most inclusive system is considered to make 

decisions with multiple criteria because this method gives to formulate the problem as a 

hierarchical and believe a mixture of quantitative and qualitative criteria as well[65]. 

AHP is comprised of a few powerful and widely accepted concepts: 

 Structuring complexity in a hierarchy 

 Making pairwise, relative comparisons 

 Using redundancy of judgments to improve accuracy and deal with «fuzziness». 

2.2.1.1.1 Steps to Conduct AHP 

AHP models are generally composed of the highest level (goal layer), several intermediate 

levels (criterion layers) and the alternatives levels (index layers). In the AHP model, different 

basic factors belong to several layers from top to bottom. 

In the AHP structure, the judgment matrix is a notably important term, which is formed by 

comparing any two basic factors and metricating the factors. There are various scaling 

methods, and the generally used one is the 1–9 scale method, as shown in Table 2.1. The 

specific steps are explained in detail in the following sections[66]. 

 Step 1: development of the hierarchy structure where the goal lies at the top of the 

hierarchy; the next two tiers typically include the criterion, while alternatives 

appear at the bottom of the hierarchy figure 2.1. 
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Figure 2.1 Hierarchy structure of the AHP method 

 
 Step 2 :make a quadratic matrix of a decision in order to compare of all elements 

belonging to the same hierarchical level (criticalities and decisions), while 

respecting the elements in the higher level by determining the importance of each 

one to another according to the comparison scale shown in table 2.1 (assume that 

aij is the value of the relative importance between the elements i and j so aij = 1 and 

aji = 1 / aij) 
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Table 2.1AHP comparison scale  
Intensity of importance Definition 

1 Equal 
importance 

3 Moderate 
importance 

5 Essential 
importance 

7 Very strong 
importance 

9 Extreme 
importance 

2, 4, 6,8 Intermediate 
values 
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 Step 3: this step consists of determining priorities by calculating the relative 

importance of each element of the hierarchy from the evaluation obtained in the 

previous step, to determine a new matrix B. 

                                        (2.2) 

 

 

 

 The relative weight of an element i in column j of matrix B is calculated by the 

following equation: 
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For each matrix, a so-called local priority vector is calculated by applying equation 2.4: 
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The consistency is evaluated by using consistency index (CI) given by the following 

formula: 

                     1
max

−
−

=
K

KTC
CI                                 (2.5) 

With: k the number of elements compared and TC the mean consistency value. 

Likewise, a consistency ratio (CR) is defined and can be interpreted as the probability that 

the matrix B is randomly modified according to the number of criteria and a random index 

(RI). 

    RI
CICR =                           (2.6) 
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According to Saaty, the ratings must be revised in the event that CR exceeds 0.1 

 The random index (RI) is given in the appendix A. 

 Step 4: the final step of the AHP is to synthesize all weights; i.e., to multiply the 

alternatives’ priorities by the corresponding criterion weight, then appraising the 

results to obtain the final composite priorities of the alternatives. The highest value 

of the priority vector indicates the best-ranked alternative. 

2.2.1.2. Fuzzy Analytic Hierarchy Process 

AHP is an effective method for resolving problems of decision. It ranks the importance of 

criteria using pair-wise comparisons. Buckley combined the AHP into fuzzy theory, called 

Fuzzy AHP. In fuzzy AHP, to respond with ambiguity and subjectivity in pair-wise 

comparison, the ability of AHP has been improved. Instead of a crisp value, fuzzy AHP utilizes 

a domain of values to combine the decision maker's uncertainties[67]. The Fuzzy Analytic 

Hierarchy process procedure is presented as follows: 

 Step 1: A pair-wise comparison matrix is created, as shown in equation 2.7. Using 

expert questionnaires, the expert is requested to give linguistic variables to pair-

wise comparisons across all criteria using triangular fuzzy numbers figure 2.2.  
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Figure 2.2 Fuzzy triangular membership functions 
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 Step 2: For each criterion, compute the fuzzy geometric mean as shown in equation 

2.8. 

                        n
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 Step 3: Normalization is used to calculate the fuzzy weights. Equation can be used 

to calculate the fuzzy weight of the ith criteria: 

                                                    
1)...21( −⊕⊕⊕⊗= rnrrrw ii                                                   (2.9) 

Where the weight’s center of area (COA) is calculate as:
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2.2.2. Distance-based methods (the grey relational analysis (GRA)) 

Grey System theory was introduced to science world by Deng widely in (1982) has been 

widely used to solve the uncertainty problems under the discrete data and information 

incompleteness. In addition, GRA method is one of the very popular methods to analyze 

various relationships among the discrete data sets and make decisions in multiple attribute 

situations. Grey Relational Analysis is also used for decision making in multi attribute cases. 

The major advantages of Grey Relational Analysis are based on original data, easy calculations 

and being straightforward and one of the best methods to decide in business environment. Grey 

Relational Analysis compares the factors quantitatively in a dynamic way using information 

from the Grey System. This approach contacts establish relations among the factors based on 

level of similarity and variability[68]. 

2.2.2.1 The main procedure of the grey relational analysis 

2.2.2.1.1 Recognizing Comparative Series 

The comparative series is an information series that includes values for the different 

parameters. The comparative series is presented as follow: 

nizmzzzzmz iiiii ,...,3,2,1,))(),.....,3(),2(),1(()( =∈=                      (2.10) 

Where m denotes the criticality factors number and n is the failure modes number. zi (m) 

indicates the mth factors of zi and the n information series is presented as follows:  
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2.2.2.1.2. Standard series identification 

The objective of identifying the standard series is to deduce the degree of relation; it 

represents the optimal level of all decision parameters. Standard series can be explained as 

follows: 

                             )1,....,1,1())(),...,2(),1(()( 0000 == mzzzmz                                    (2.12) 

 

 2.2.2.1.3. Obtain the difference between comparative and standard series  
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Where z0(m) is the standard series, zi(m) is the comparative series, and )()()( 00 mzmzm ii −=∆  

 2.2.2.1.4. Compute the Grey Relationship Coefficient 

The different parameters are compared to the standard series. The Grey relational 

coefficient for factors is calculated as follows: 
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ζ Is a predefined coefficient and is commonly used 0.5. 

2.2.2.1.5. Integrate the weighted factors to determine the degree of relation  

If each factor has equal importance equation (2.15) is used to determine the degree of 

relation: 
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If the parameters have different importance: 
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Where β(m) denotes the factor weights. To calculate the risk factor weights, fuzzy AHP 

Process was utilized in the next stage. 

2.2.2.1.6.Priority Ranking  

The stronger the degree of relation, the smaller is the effect of the cause 

2.3. Artificial intelligence approaches 

Artificial intelligence is the science and engineering of making intelligent machines, 

especially intelligent computer programs. It is related to the similar task of using computers to 

understand human intelligence. Researchers have extensively used artificial intelligence 

models to improve the FMECA performance, and they are regarded as a valuable tool for 

dealing with the shortcomings associated with the traditional RPN method. 

2.3.1. Fuzzy LOGIC 

In recent years, the number and variety of fuzzy logic applications have increased 

significantly. The applications range from consumer products such as cameras, camcorders, 

washing machines, and microwave ovens to industrial process control, medical 

instrumentation, decision-support systems. 

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical system, 

which is an extension of multivalued logic. However, in a wider sense fuzzy logic (FL) is 

almost synonymous with the theory of fuzzy sets, a theory which relates to classes of objects 

with unsharp boundaries in which membership is a matter of degree. In this perspective, fuzzy 

logic in its narrow sense is a branch of FL. Even in its more narrow definition, fuzzy logic 

differs both in concept and substance from traditional multivalued logical systems. 

In effect, much of FL may be viewed as a methodology for computing with words rather 

than numbers. Although words are inherently less precise than numbers, their use is closer to 

human intuition. Furthermore, computing with words exploits the tolerance for imprecision and 

thereby lowers the cost of solution 

2.3.1.1 Basic Definitions and Terminology 

Let X is a space of objects and x is a generic element of X. A classic set A, A X ⊆ is 

defined as a collection of elements or objects x∈ X, such that each x can either belong to or not 

belong to the set A. By defining a characteristic function for each element x in X, we can 
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represent a classical set A by a set of ordered pairs (x, 0) or (x, 1), which indicates x∉ A or x∈ 

A, respectively. 

Unlike the classical set, a fuzzy set expresses the degree to which an element belongs to a 

set. Hence the characteristic function of a fuzzy set is allowed to have values between 0 and 1, 

which denotes the degree of membership of an element in a given set. 

If X is a collection of objects denoted generically by x, then a fuzzy set A in x is defined as 

a set of ordered pairs: 

   XxxxA A ∈= ))(,( µ                          (2.17) 

Where µA(x) is called the membership function (MF) for the fuzzy set A. The MF maps 

each element of x to a membership value between 0 and 1. It is obvious that if the value of the 

membership function µA(x) is restricted to either 0 or 1, then A is reduced to a classical set and 

µA(x) is the characteristic function of A. Usually X is referred to as the universe of discourse, 

or simply the universe, and it may consist of discrete (ordered or unordered) objects or 

continuous space. 

The construction of a fuzzy set depends on two things: the identification of a suitable 

universe of discourse and the specification of an appropriate membership function. Therefore, 

the subjectivity and non-randomness of fuzzy sets is the primary difference between the study 

of fuzzy sets and probability theory. 

In practice, when the universe of discourse X is a continuous space, we usually partition X 

into several fuzzy sets whose MFs cover x in a more or less uniform manner. These fuzzy sets, 

which usually carry names that confirm to adjectives appearing in our daily linguistic usage, 

such as “large,” “medium,” or “negative” are called linguistic values or linguistic labels. In 

general, a linguistic variable with universe of discourse X may take on several linguistic 

values. The set of linguistic values is referred to as the term set of the linguistic variable. Since 

each linguistic value is a fuzzy set on X, the term set represents a fuzzy partitioning of X, 

where the membership functions of the linguistic values are made to overlap. 

2.3.1.2 Membership Functions (MF) 

As discussed above a fuzzy set is completely parameterized by its MF. Since most fuzzy 

sets have a universe of discourse X consisting of the real line R, it would be impractical to list 

all the pairs defining a membership function. So a MF is expressed with the help of a 

mathematical formula. A MF can be parameterized according to the complexity required. 
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These also could be one dimensional or multi dimensional. Here are a few classes of 

parameterized MFs of one dimension that is MFs with a single input[69, 70]. 

2.3.1.2.1. Triangular Membership Function 

A triangular MF is specified by three parameters {a, b, c} as follows 
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The parameters {a, b, c} (with a<b<c) determine the x coordinates of the three corners of 

the underlying triangular MF. 

2.3.1.2.2. Trapezoidal Membership Function 

A trapezoidal MF is specified by four parameters {a, b, c,d} as follows 

 

 

 

                       (2.19) 

 

 

 

The parameter {a, b, c, d} (with a < b < c < d) determine the x coordinates of the four 

corners of the underlying trapezoidal MF 

2.3.1.2.3. Gaussian Membership Function 

A Gaussian MF is specified by two parameters {c,σ} 
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A Gaussian MF is determined completely by c and σ; c represents the MFs center and 

determines the MFs width 

2.3.1.2.4. Generalized Bell Membership Function 

A generalized bell MF (or bell MF) is specified by three parameters {a, b, c} 
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Where the parameter b is usually positive. It is also called as the Cauchy MF. 
2.3.1.2.5. Sigmoid Membership Function 

A sigmoid MF is defined by 
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1;;                        (2.22) 

 
Where a controls the slope at the crossover point x=c. Sigmoid functions are widely used 

as the activation function of artificial neural networks. 

2.3.1.3. Linguistic Variables and Fuzzy If-Then Rules 

In 1973, Professor Lotfi Zadeh proposed the concept of linguistic or "fuzzy" variables. 

Think of them as linguistic objects or words, rather than numbers. The sensor input is a noun, 

e.g. "temperature," "displacement," "velocity," "flow," "pressure," etc. Since error is just the 

difference, it can be thought of the same way. The fuzzy variables themselves are adjectives 

that modify the variable (e.g. "large positive" error, "small positive" error, "zero" error, "small 

negative" error, and "large negative" error). As a minimum, one could simply have "positive", 

"zero", and "negative" variables for each of the parameters. Additional ranges such as "very 

large" and "very small" could also be added to extend the responsiveness to exceptional or very 

nonlinear conditions, but aren't necessary in a basic system[71, 72]. 

Once the linguistic variables and values are defined, the rules of the fuzzy inference 

system can be formulated. These rules map the fuzzy inputs to fuzzy outputs. This mapping 

takes place through compositional rule of inference which is based on Zadeh’s extension of 

modus ponens which is nothing more than the familiar if-then conditional form. A fuzzy if-

then rule (also known as fuzzy rule) assumes the form: 

                  If x is A then y is B                             (2.23) 

Where A and B are linguistic values defined by fuzzy sets on universe of discourse x and y 

, respectively. “x is A “ is called the antecedent or premise, while “y is B” is called the 

consequent or conclusion. This rule is also abbreviated as A→ B. 

2.3.1.4. Fuzzy Inference Process 

There are three main fuzzy logic inference systems (fuzzy logic approximators): Mamdani 

type, Sugeno type, and Tsukamoto type. Of these Mamdani fuzzy inference system is used. 

Figure 2.3 illustrates the basic building block of the inference process[73]. 
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Figure 2. 3 inference systems process 

2.3.1.4.1. Fuzzification 

The first step is to take the inputs and determine the degree to which they belong to each of 

the appropriate fuzzy sets via membership functions. In Fuzzy Logic Toolbox software, the 

input is always a crisp numerical value limited to the universe of discourse of the input variable 

and the output is a fuzzy degree of membership in the qualifying linguistic set[74]. 

For each input, we describe a universe of discourse, a partition of this universe into 

classes. The fuzzification, is to allocate the membership function to each parameter's real 

value, i.e. to transform input data into a fuzzy set. 

2.3.1.4.2. Apply Fuzzy Operator 

After the inputs are fuzzified, you know the degree to which each part of the antecedent is 

satisfied for each rule. If the antecedent of a given rule has more than one part, the fuzzy 

operator is applied to obtain one number that represents the result of the antecedent for that 

rule. This number is then applied to the output function. The input to the fuzzy operator is two 

or more membership values from fuzzified input variables. The output is a single truth value. 

As is described in previous section, any number of well-defined methods can fill in for the 

AND operation or the OR operation. In the toolbox, two built-in AND methods are supported: 

min (minimum) and prod (product). Two built-in OR methods are also supported: max 

(maximum), and the probabilistic OR method [75]. 

The following example figure 2.4 shows the OR operator max at work, evaluating. The 

two different pieces of the antecedent (service is excellent and food is delicious) yielded the 

fuzzy membership values 0.0 and 0.7 respectively. The fuzzy OR operator simply selects the 

maximum of the two values, 0.7. The probabilistic OR method would still result in 0.7. 
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Figure 2.4 Fuzzy Operator example 

 
 

2.3.1.4.3 Apply Implication Method 

Before applying the implication method, you must determine the rule's weight. Every rule 

has a weight (a number between 0 and 1), which is applied to the number given by the 

antecedent. Generally, this weight is 1 (as it is for this example) and thus has no effect at all on 

the implication process. From time to time you may want to weight one rule relative to the 

others by changing its weight value to something other than 1. 

After proper weighting has been assigned to each rule, the implication method is 

implemented. A consequent is a fuzzy set represented by a membership function, which 

weights appropriately the linguistic characteristics that are attributed to it. The consequent is 

reshaped using a function associated with the antecedent (a single number). The input for the 

implication process is a single number given by the antecedent, and the output is a fuzzy set. 

Implication is implemented for each rule. Two built-in methods are supported, and they are the 

same functions that are used by the AND method: min (minimum), which truncates the output 

fuzzy set, and prod (product), which scales the output fuzzy set. 

2.3.1.4.4. Aggregate All Outputs 

Because decisions are based on the testing of all of the rules in a FIS, the rules must be 

combined in some manner in order to make a decision. Aggregation is the process by which the 

fuzzy sets that represent the outputs of each rule are combined into a single fuzzy set. 

Aggregation only occurs once for each output variable, just prior to the fifth and final step, 

defuzzification. The input of the aggregation process is the list of truncated output functions 
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returned by the implication process for each rule. The output of the aggregation process is one 

fuzzy set for each output variable. 

As long as the aggregation method is commutative (which it always should be), then the 

order in which the rules are executed is unimportant. Three built-in methods are supported: 

• max (maximum) 

• probor (probabilistic OR) 

• sum (simply the sum of each rule's output set) 

2.3.1.4.5. defuzzification 

The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy set) and 

the output is a single number. As much as fuzziness helps the rule evaluation during the 

intermediate steps, the final desired output for each variable is generally a single number. 

However, the aggregate of a fuzzy set encompasses a range of output values, and so must be 

defuzzified in order to resolve a single output value from the set. There are five built-in 

defuzzification methods supported: centroid, bisector, middle of maximum (the average of the 

maximum value of the output set), largest of maximum, and smallest of maximum. Perhaps the 

most popular defuzzification method is the centroid calculation which is defined by the 

following equation: 

                              ∫
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When the function μ (Ci) is discredited, the center of gravity is given by: 
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The following figure 2.5 illustrates the global fuzzy inference process 
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Figure 2.5 global fuzzy inference process 
 

2.3.1.5. Why Use Fuzzy Logic 

Here is a list of general observations about fuzzy logic: 

• Fuzzy logic is conceptually easy to understand. 

• The mathematical concepts behind fuzzy reasoning are very simple. Fuzzy logic is 

a more intuitive approach without the far-reaching complexity. 

• Fuzzy logic is flexible. 

• With any given system, it is easy to layer on more functionality without starting 

again from scratch. 

• Fuzzy logic is tolerant of imprecise data 

• Fuzzy logic can model nonlinear functions of arbitrary complexity. You can create 

a fuzzy system to match any set of input-output data. This process is made 

particularly easy by adaptive techniques like Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS), which are available in Fuzzy Logic Toolbox software. 

• Fuzzy logic can be built on top of the experience of experts. 

• Fuzzy logic can be blended with conventional control techniques. 

• Fuzzy logic is based on natural language 
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2.3.2. Development of the ANFIS Model and the structure 

Among various combinations of methodologies in soft computing, the one that has highest 

visibility at this juncture is that of fuzzy logic and neurocomputing, leading to neuro-fuzzy 

systems. Within fuzzy logic, such systems play a particularly important role in the induction of 

rules from observations. An effective method developed by Dr. Roger Jang for this purpose is 

called ANFIS (Adaptive Neuro-Fuzzy Inference System). This method is an important 

component of the toolbox. 

The adaptive neuro-fuzzy inference system is the result of combining artificial neural 

network (ANN) and fuzzy inference system (FIS)[76]. The latter offers a fuzzy logic technique 

based on rules created during the training process of the model. The input–output relationship 

is explained by rules derived from relevant knowledge. The training examples are used to 

determine the parameters of FIS's membership function. Mamdani and Sugeno are the most 

commonly used FISs. ANFIS uses the ANN because of its ability to classify and identify 

patterns. It uses a hybrid learning technique that combines a least-squares and back-

propagation method. ANFIS uses neural network learning methods to adjust the parameters of 

the fuzzy inference system. Various characteristics make ANFIS a great success: 

• It improves fuzzy IF-THEN rules in order to depict the action of a complicated 

system. 

• The ANFIS system does not necessitate any previous human expertise. 

• It allows accurate and fast learning 

• It is easy to implement. 

• It's simple to combine both numeric and linguistic knowledge to solve the problem 

2.3.2.1.ANFIS architecture 

In ANFIS the output of each rule can be a linear combination of input variables plus a 

constant term or can be only a constant term. The final output is the weighted average of each 

rule’s output. It is assumed that there are two inputs in order to comprehend basic rule 

construction. y and z, and one output as shown in figure 2.6. According to sugeno's first-order 

model, two fuzzy if–then rules are presented as follows: 

Rule 1 ∶ If y is K1 and z is N1, then f1 = p1y + q1z + r1 

Rule 2 ∶ If y is K2 and z is N2, then f2 = p2y + q2z + r2 

Where y and z are the inputs, Ki and Ni are the fuzzy sets, while qi, pi, and ri are output 

parameters. The structure of the ANFIS system consists of five layers in order to train Sugeno-
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type FIS. The objective is to make the output of ANFIS match the training data by adjusting 

parameters. The layers are defined in the following paragraphs[77]. 

Fuzzification layer (Layer 1): The membership functions of input variables are included in 

this layer, and the output is used as the input for the next layer. Each node is multiplied in this 

context. 

 

            
2,1);(,1 == iyO Kii µ

                                  (2.26) 
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Where y and z are the inputs to node i, and Ki and Ni are the labels linguistic (low, remote, 

moderate…) related with μKi (y); and μNi (z). 

The rule layer (Layer 2): this layer is known as the rule's firing strength and can be defined 

as: 

         2,1),()( =×= izyw NiKii µµ               (2.27) 

      Where wi indicates a rule's firing strength. 

Normalization layer (Layer 3): the firing strength rules are normalized in this layer to 

assess the difference between the overall firing strengths of all rules and the firing strengths of 

each rule. The outputs of this layer are known as normalized firing. The output is given as: 

 
                      

               (2.28) 

 

Defuzzification layer (Layer 4): in this layer, each node is an adaptive node with a node 

function. The output of this layer is a first-order polynomial and a normalized firing strength 

product and represented as: 

                     .2,1),(4 =++== irzqypwfwO iiiiiii               (2.29) 

Where w the output of the third layer and fi is is the output of the ith rule. 

     Output layer (Layer 5): This layer represents the model's global output as the sum of all 

incoming signals. The global output is defined: 
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Figure 2.6 ANFIS architecture 
 

2.3.2.2. ANFIS Process 

the toolbox function ANFIS constructs a fuzzy inference system (FIS) whose membership 

function parameters are tuned (adjusted) using either aback propagation algorithm alone or in 

combination with a least squares type of method. This adjustment allows your fuzzy systems to 

learn from the data they are modeling. The more the rules the betters the result of cost function 

unless there is overfitting. Over fitting occurs if there are many MF and there are a few samples 

so the free parameters are memorizing the previous values[78]. Hence, different methods, 

parameters and datasets should be applied to find the minimum RMSE for the testing dataset. 

The flowchart for adjusting the ANFIS shown in figure 2.7. 

It starts from data collection with event data including input and output data in the form of 

the data array. Then, the training data will be loaded into ANFIS editor and the specified 

testing data will be used for further validation. The next step is initializing the fuzzy inference 

system (FIS) to set up the numbers and types of current MF in modeling nonlinear functions. 
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Figure 2.7 The flowchart  of the ANFIS 

 
 

2.3.2.2.1. Data collection 

The databases selected for ANFIS training are of great importance and also determine the 

model accuracy and applicability. Therefore, the experimental databases used as input–output 

of the ANFIS model should be broad and able to representative of the problem to be solved. 

But the whole ranges of engine running conditions are not feasible because of the large number 

of parameters. Therefore, it needs a simplified collection of particular parameters 

2.3.2.2.2. Training Data 

The training data is a required argument to ANFIS, as well as to the Neuro- Fuzzy 

Designer. Each row of the training data is a desired input/output pair of the target system you 

want to model. Each row starts with an input vector and is followed by an output value. 

Therefore, the number of rows of training data is equal to the number of training data pairs, 

and, because there is only one output, the number of columns of the training data is equal to the 

number of inputs plus one. 

2.3.2.2.2.1. Generating FIS Structure 
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The FIS structure contains both the model structure, (which specifies such items as the 

number of rules in the FIS, the number of membership functions for each input, etc.), and the 

parameters, (which specify the shapes of membership functions). 

There are two methods that ANFIS learning employs for updating membership function 

parameters: 

• Back-propagation for all parameters (a steepest descent method) 

• A hybrid method consisting of back-propagation for the parameters associated with 

the input membership functions, and least squares estimation for the parameters 

associated with the output membership functions 

These method choices are designated in the command line function, ANFIS, by 1 and 0, 

respectively. As a result, the training error decreases, at least locally, throughout the learning 

process. Therefore, the more the initial membership functions resemble the optimal ones, the 

easier it will be for the model parameter training to converge. Human expertise about the target 

system to be modeled may aid in setting up these initial membership function parameters in the 

FIS structure. 

2.3.2.2.2.2. Training Error 

The training error is the difference between the training data output value, and the output 

of the fuzzy inference system corresponding to the same training data input value, (the one 

associated with that training data output value). The training error records the root mean 

squared error (RMSE) of the training data set at each epoch. The Neuro-Fuzzy Designer plots 

the training error versus epochs curve as the system is trained. 

2.3.2.2.3. Checking Data  

The checking data is used for testing the generalization capability of the fuzzy inference 

system at each epoch. The checking data has the same format as that of the training data, and 

its elements are generally distinct from those of the training data[79]. 

The checking data is important for learning tasks for which the input number is large, 

and/or the data itself is noisy. A fuzzy inference system needs to track a given input/ output 

data set well. Because the model structure used for ANFIS is fixed, there is a tendency for the 

model to overfit the data on which is it trained, especially for a large number of training 

epochs. If overfitting does occur, the fuzzy inference system may not respond well to other 

independent data sets, especially if they are corrupted by noise. A validation or checking data 

set can be useful for these situations. This data set is used to cross-validate the fuzzy inference 
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model. This cross-validation requires applying the checking data to the model and then seeing 

how well the model responds to this data. 

When the checking data option is used with ANFIS, either via the command line, or using 

the Neuro-Fuzzy Designer, the checking data is applied to the model at each training epoch. 

When the command line ANFIS is invoked, the model parameters that correspond to the 

minimum checking error are returned via the output argument fismat2. The FIS membership 

function parameters computed using the Neuro-Fuzzy Designer when both training and 

checking data are loaded are associated with the training epoch that has a minimum checking 

error. 

The use of the minimum checking data error epoch to set the membership function 

parameters assumes 

• The checking data is similar enough to the training data that the checking data error 

decreases as the training begins. 

• The checking data increases at some point in the training after the data overfitting 

occurs 

2.3.2.2.3.1. Checking Error 

The checking error is the difference between the checking data output value, and the 

output of the fuzzy inference system corresponding to the same checking data input value, 

which is the one associated with that checking data output value. The checking error records 

the RMSE for the checking data at each epoch. The Neuro- Fuzzy Designer plots the checking 

error versus epochs curve as the system is trained[80]. 

2.4. Conclusion 

Because of various limitations of the traditional FMECA, a great number of alternative 

risk evaluation models have been proposed for enhancing the performance FMECA during the 

last decade. The MCDM approaches and Artificial intelligence approaches (AI) are the most 

widespread methods employed to support risk evaluation and prioritization in the literature. In 

this chapter, we provided a comprehensive overview of these approaches for assessing and 

ranking failure modes and improving the use of the FMECA method. 

In the next chapter we will apply the conventional failure mode effect and criticality 

analysis for two case studies. The results obtained will be used to enhance the FMECA method 

in subsequent chapters. 



 

Chapter III 
Traditional methodology of risk assessment in 

FMECA  
3.1. INTRODUCTION  

Failure mode and effects and criticality analysis (FMECA) is a widely used engineering 

technique for defining, identifying and eliminating known and/or potential failures, problems, 

errors and so on from system, design, process, and/or service before they reach the customer. 

The so-called failure mode is defined as the manner in which a component, subsystem, system, 

process, etc. could potentially fail to meet the design intent. A failure mode in one component 

can be the cause of a failure mode in another component. A failure cause is defined as a design 

weakness that may result in a failure. For each identified failure mode, their ultimate effects 

need to be determined, usually by a FMECA team. A failure effect is defined as the result of a 

failure mode on the function of the product/process as perceived by the customer[81].  

A system, design, process, or service may usually have multiple failure modes or causes 

and effects. In this situation, each failure mode or cause needs to be assessed and prioritized in 

terms of their risks so that high risky (or most dangerous) failure modes can be corrected with 

top priority. The traditional FMECA determines the risk priorities of failure modes through the 

risk priority number (RPN), which is the product of the occurrence (O), severity (S) and non-

detection (ND) of a failure. That is: 

                              RPN= O × S × ND                                                (3.1) 

To demonstrate the application of conventional FMECA method, an industrial cases study 

is presented in this chapter. The results obtained as a summary of this chapter will be used as 

the prior data for the development and improving the classical FMECA method and 

ameliorating the relevance of decision making of a decision support in the next chapter. 

 
Part I (Case study 1): an industrial LPG storage system 

3.2. LPG storage system 

3.2.1. What is LPG? 

LPG (Liquid Petroleum Gas) is a mixture of the volatile hydrocarbons like propene,  

propane, butene, isobutane, butane (all of them in liquid state), being in more  proportion 

propane (C3H8) and Butane (C4H10). LPG is a gas at atmospheric pressure and normal 

ambient temperatures, but it can be liquefied when moderate pressure is applied or when the 
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temperature is sufficiently reduced[82].  LPG was discovered in 1912 by Dr. Walter O. 

Snelling. As usual, there is a story before this discover. 

3.2.2. Properties of LPG 

LPG can be propane, butane or mixture of both hidrocarbures. Composition usually 

changes depending of the region. It those that average temperatures are high, LPG has a higher 

percentage of butane. In the other hand, in places where average temperatures are lower, it has 

a high percentage of propane. This different is due to the boiling point of both gases (-42.1ºC 

for propane, -0.5ºC for butane). 

3.2.2.1. Vapour pressure 

Vapour pressure is the pressure at one vapour phase is at equilibrium with its liquid phase 

at a given temperature. It valour it’s independent of liquid and vapour amount (but it’s 

necessary to be both phases).   A lighter substance has a higher vapour pressure than heavier 

ones.  When a mixture of substances is taken, vapour pressure has relation with temperature, 

but additionally, it depends of the liquid phase composition too. 

3.2.2.2. Specific weight of liquid 

Specific weight of a liquid it’s the comparison between a given mass of a volume of a 

liquid at a certain temperature, with the same volume of water at that temperature. 

3.2.2.3.Specific weight of vapour.    

Specific weight of a vapour it’s the comparison between a given mass of a volume of a 

vapor at a certain temperature, with the mass of the same volume of air at that temperature. 

3.2.2.4. Calorific power 

Calorific power it’s the amount of energy (or heat) that it’s liberate by a determinate 

amount of a substance (fuel) during the complete combustion of it. 

3.2.3. Uses of LPG 

t can be use in agricultural uses as:  Green House Heating, flame weeding, crop drying, 

poultry rearing, waste incineration or distillation process, commercial uses of LPG can be like 

heating, refrigeration or air-conditioning, some of Industrial uses of LPG are ceramic industry, 

food processing industry, metal processing industry, textile industry, printing industry or 

chemicals production industry, it can be at mining process too. And finally, domestic uses, as 

cooking, heating, lighting, cooling, braining or clothes drying[83] . 
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3.3. Identification of the systems to be studied 

3.3.1. LPG Storage zone 

To better estimate the contribution of the approach developed, the authors applied it to an 

industrial LPG storage system for ZCINA Hassi Messaoud in Algeria includes 4 pressure 

storage spheres (figure 3.1) with a total capacity of 500 m3 containing Liquefied Petroleum 

Gas stored under pressure from 15 to 21 barg, LPG will be transported by 2 centrifugal pumps 

to be sent to the pumping station outside the complex, the LPG storage site holds the following 

facilities[84]: 

Access accessories: which group the following components: the staircase, the manhole, 

and the interior ladder.  

• Control accessories: group a pressure, temperature, and level indicator.  

• The operating accessories: are the different tubular placed on the lower and 

external part of the tanks which communicate with the inside of the tank.  

• Safety accessories: these are the components and equipment that ensure the 

protection of the tanks against different risks. 

• the TI  temperature indication in the upper part of the sphere 

• feed gas and residual gas pipelines including scraper stations 

• a fractionation section to produce the products requested by the SONATRACH 

specifications 
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Figure 3.1 LPG sphere design 
3.3.2. Phenomena observed 

These have been classified into five categories : 

 Table 3.1Phenomena used as a basis for classifying accidents 
Phenomena 

1.Liquid spreading on the ground 

2.Gas phase leak without ignition 

3.Jet (or pool) fire 

4.Gas or vapour explosion 

5.B L E V E 

 

3.3.3. The severity of accidents 

This was evaluated simply by dividing the accidents into two categories: 

• Accidents not resulting in casualties. 

• Accidents resulting in casualties.  
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Some 55% of the accidents did not result in casualties. In 15 of the listed cases there were 

casualties (injury or death) and the phenomena responsible are shown in the figure below. 

 

 
Figure 3.2 Causes of injury or death[85] 

 

3.3.3.1. The causes of accidents 

Any accident, even if it affects a whole area, is "usually caused by a particular action or 

system. In the present case therefore, we looked into the nature of the causes and separated the 

main groups of causes-circumstances occurring. Their distribution is shown in the figure 

3.3[85]. 

 

Figure 3.3 Breakdown by type of cause-circumstance[85] 
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3.3.3.2. Important safety elements 

Numerous risk control measures have been put in place both in terms of the prevention of 

major accidents and in terms of protection / intervention against its consequences. We can cite 

in particular: 

• Safety valves that protect the whole unit, 

• During unit operation: regular inspection to ensure that the equipment does not 

suffer from corrosion or mechanical fatigue, 

• The presence of pressure and temperature control systems on the whole unit 

equipped with alarms and safety devices that automatically shut down and isolate 

certain systems in the event of excessive deviation of these parameters, 

• The fire resources of the LPG adapted to the risks and to the equipment to be 

protected: deluge systems, water curtains, and means of protection specific to 

hydrocarbon or LPG storage tanks. 

3.4. Traditional FMECA method for criticality evaluation (case study I)  

As we have mentioned previously In FMECA, the RPN is obtained by multiplication of 

three inputs, probability of occurrence (F), Severity, and non-Detection. The probability of 

occurrence is represented as the likelihood that a specific cause will appear. Severity is an 

evaluation of the effect of potential failure mode. Detection is an evaluation of the ability of 

current design control to detect a potential cause. In global, these three parameters are 

evaluated by experts based on commonly agreed evaluation criteria 

Table 3.5 illustrates the classic FMECA study for LPG storage system. The quotation 

scales of F, S, and ND are defined in Table (3.2, 3.3, and 3.4). The triggering threshold for 

corrective actions is defined as a minimum criticality equal to 45 which corresponds to 0.45 in 

the discourse universe [0.1][81]. 

 
                 Table 3.2 Severity rating                                Table 3.3 Frequency rating                   

                  
        

 

 

 

 

 

Severity 
index 

Description 

 1 Negligible  

2 Moderate  

3 Critical  

4 Catastrophic  

Frequency 
index 

Description 

 1 Improbable  

2 Rare  

3 Occasional  

4 Frequent  
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Table 3.4 Non-detection rating 
 

 

 

 

 

 

Table 3.5FMECA of the LPG sphere system 

Non-detection index Description 

 1 Almost certain detection  

2 Moderate chance of detection  

3 Low chance of detection  

4 Cannot detect  
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In our case, we will study the failure mode n°1 (most critical mode). For FMECA 

criticality evaluation is normalized RPN (risk priority number), where RPN is given as 

RPN/64. Consider, failure mode n°1 with the frequency of a failure mode is occasional, 

severity is critical, and non-detection is Low, RPN will be: 

RPN=F×S×ND/64            RPN = 3×3×3/64 = 0.42 

Part II (Case study II): an industrial Gas Turbine System 
3.5. Gas turbine  

The system chosen case study 2 is a gas turbine system, the diffusion of these systems has 

been widely observed in Algeria. It is a combustion engine that can convert mechanical energy 

from natural gas. This energy is then used to power a generator which generates electricity. 

This system is shown in figure 3.4 

A gas turbine is a complex system with lots of rotary and stationary parts is used for 

generating electric power.  The  gas  turbine  is  quite  new  in  the  history  of  energy  
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conversion. The first practical gas turbine used to generate electricity ran at Neuchafel, 

Switzerland in 1939 and was developed by the Brown Boveri Company. 

 

Figure 3.4 Gas turbine design[86] 

 

3.5.1. Gas Turbine Categories 

3.5.1.1. Aeronautical Gas Turbine 

In comparison with internal combustion engines, gas turbines are lighter and smaller and 

have a very high power to weight ratio. Though they are mechanically simpler than 

reciprocating engines, and their characteristics of high speed and temperature operation require 

high precision components and endurable materials making them more expensive to 

manufacture. 

3.5.1.2. Electrical Power Generation 

In electricity generating applications the gas turbine is used to drive a synchronous 

generator which provides the electrical power output but as far as the turbine normally operates 

at very high rotational speeds it must be connected to the generator through a high ratio 

reduction gearbox. 

3.5.2. Gas Turbine Configurations 

Gas turbine power generators are used in two basic configurations: 

 Simple Cycle: This cycle is consisting of the gas turbine driving an electrical 

power generator (as shown in Figure 3.5). 

 Combined Cycle: Obtaining the maximum efficiency is the objective of combined 

cycle designers, also the hot exhaust gases of the gas turbine are used to raise steam 

to power a steam turbine with both turbines being connected to electricity 

generators (as shown in Figure 3.6). 
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Figure 3.5 The schematic of simple cycle gas turbine power generator 

 
 
 

  
Figure 3.6 The schematic of combined cycle power generator 

 

3.5.3.Working Principle of a Gas Turbine 

In a gas turbine unit, the inlet ambient air is compressed by passing through several  stages  

of  stationary  and  rotary  blades  and  can  then  be  used  both  in  the  combustion  chamber  

and  for  cooling  purposes.  The  compressed  air  that  enters  the  combustion  chamber is 

mixed  with  fuel and is ignited to provide a high pressure, high velocity,  and  high  

temperature  gas  flow  that  is  able  to  drive  the  turbine  shaft  at  high  rotary  speeds. 

However, due to the precise design conditions of gas turbine units and the high rotary speeds at 

which they operate, the malfunction of one component can lead to severe damage to the entire 

unit. In between, the rotary and stationary parts of the  turbine section, such as blades and 

disks, are more prone to failure because they work  in  a  corrosive  environment  under  a  high  

temperature  gas  flow  with  a  high  pressure  gradient. 

The reason why gas turbine is very practical and being used by many companies is 

because it has lots of advantages. Some of the principle advantages of the gas turbine are 
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because it can produce large amounts of useful power for a relatively small size and weight. 

Since motion of all its major components involve pure rotation (i.e. no reciprocating motion as 

in a piston engine), its mechanical life is long and the corresponding maintenance cost is 

relatively low. Even though the gas turbine must be started by some external means (a small 

external motor or other source, such as another gas turbine), it can be brought up to full-load 

(peak output) conditions in minutes as contrasted to a steam turbine plant whose start up time is 

measured in hours. A wide variety of fuels can be utilized. Natural gas is commonly used in 

land-based gas turbines while light distillate (kerosene-like) oils power aircraft gas turbines. 

Diesel oil or specially treated residual oils can also be used, as well as combustible gases 

derived from blast furnaces. The usual working fluid is atmospheric air. As a basic power 

supply, the gas turbine requires no coolant (e.g. water). 

Figure 3.7 shows is the functional tree of a gas turbine where it listed down the main 

systems and components of a gas turbine system. The equipment is divided into five main 

subsystems: trunnion support, compressor, combustors, and power turbine and start/stop 

subsystem. Those main subsystems are divided into more detailed components, each one 

performing a specific function[87]. 
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Figure 3.7 Functional Tree of Gas Turbine. 

 

3.5.4. Common Failures in Gas Turbine System 

Common failures in the gas turbine system were studied by different authors, with the aim 

of preventing future failures by improving the mechanical design, designing new materials, or 

proposing guidelines for better maintenance and utilization of gas turbine units. The failure 

mechanism of the gas turbine due to damage in turbine disks or blades is studied in by using 

visual inspection, macro and micro fractography, and numerical mechanical analyses. In these 

studies, the fatigue fracture, existence of region with high stress levels, creep, foreign object 
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damage, and material degradation due to surface erosion were identified as the main failure 

mechanisms. 

The common failure modes of a general gas turbine can be classified as follows, shown in 

Table 3.6 
Table 3.6Failure modes of gas turbine system  

Component 
 

Element 
 

Failure modes 
 

Compressor Rotor blades 
 

Vibration, Over-speed, 
erosion, Over temperature 

 
Rotor (disk) 

 
Fatigue, creep ,stall 

 
Turbine 

 
Rotor blades 

 
Creep, fatigue, corrosion, 

erosion 
 

Rotor (disk) 
 

Creep, rupture, fatigue 
 

Stators 
 

Creep, fatigue, corrosion, 
erosion, buckling 

 
Combustion chamber Linear 

 
Hot Spot on Flame Tube 

, Flame Out, Flame Leakage 
 

 Casing 
 

Fatigue 
 

 

3.5.4.1. Vibration 

One of the two engine rotors is called compressor rotor which is located at the front of the 

engine ant its duty is to compress the incoming air. The main reason for the mentioned failure 

is failing the bearings at the beginning and end of the rotor which damp the incoming 

vibrations. But among other reasons that are less likely to occur, we can mention loose engine 

installation mounts that cause the engine to place at an angle to the horizon and despite the low 

probability of occurrence, severe vibration is entered to the system. Another possibility of this 

malfunction could also be the electric fault of vibration indicator in which case rotors are 

serviceable 

3.5.4.2. Over temperature 

Through the section of the intake air, the compressor increases the pressure and the 

temperature and guides it to the combustion chamber with a minimum speed. In case the intake 

air has a higher temperature than the limit (the operating environment is hotter than specified) 
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then with the passage of hot air from compressor stages, compressor outlet air isn’t suitable for 

combustion and compressor over-temperature failure occurs. 

3.5.4.3. Over-speed 

Among the indicators that are placed against the user in control panel and are very 

important in monitoring when the jet engine is operating is speed indicator (RPM indicator) 

and according to the extent that is defined for these indicators, if engine speed exceeds a 

certain threshold, safety of the moving parts primarily and also the components that are in their 

vicinity will be compromised. 

3.5.4.4. Stall  

One of the most important factors that highly affect the performance of the gas turbine is 

air or gas streamline flow inside the engine, because wherever the flow is distorted from its 

direct linear form and takes the shape of a vortex, the engine power output is sharply reduced. 

Stall failure is the result of vortex flows’ emergence which that are usually created in effect of 

ice formation or a barrier in the inlet of the engine or damage to compressor blades in collision 

with a foreign object which causes disruption of air or gas flow. 

3.5.4.5. Flame Out 

The only cause of the rotation of jet engine turbine blades is gas flow which is generated 

inside the combustion chamber and if any problems arise in this flow, turbine rotor rotation and 

consequently power generation of generator rotation will be disrupted. Stoppage of the gas 

flow into the combustion chamber failure is called flame out and one of the main causes of this 

failure is a component through which fuel is sprayed into the combustion chamber for burning 

(fuel nozzle). Partial or total cloggage of fuel nozzles is highly effective in produced gas 

volume and because of nozzle congestion with not burned carbon masses, fuel can’t be 

withdrawn and flame. 

3.5.4.6. Flame Leakage 

The reason for this failure is as RPM fluctuation, only in this failure we’ll face gas leakage 

and through combustion chamber casing, gases produced in combustion instead of being sent 

to the turbine find a way out and the received energy content by the turbine rotor reduces. 

Finding an escape is done by the gases from the mating line of the chamber or leaves a deep 

crack on the surface of emission chamber surface 

3.5.4.7. Hot Spot on Flame Tube 

 The contact between combustion chamber inner components and the flame causes burns. 

If we consider the inner layer of the combustion chamber which is called the flame tube (as the 
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main component of this part), the flame inside the layer causes thermal stress to all of its parts 

and the engine operation continues by increasing the amount of stress. Therefore finding areas 

that are discolored and are called ―hot spots‖ is one of the main failures that occur in 

combustion chamber. 

3.5.4.8. Erosion 

Gas turbine engines operates in a hostile environment that is polluted with small particles 

are susceptible to erosion damage. Examination of a number of natural dust samples indicates 

that quartz is usually the most abundant erosive constituent, rarely falling below 70% by 

weight. Erosion is caused by the abrasive components that remove component materials from 

surface. This results in slight changes in shape and an increase in surface roughness, especially 

on the pressure side 

3.5.4.9. Corrosion 

Corrosion is an expanded oxidation caused by the existence of deposit. The deposit can 

contain salt contaminants, such as Na2SO4, NaCl, and V2O5. These contaminants combine to 

form molten deposits. But corrosion can also be enhanced by the influence of a solid or a gas. 

The phenomenon is obviously life limiting for turbine blade structural materials. 

3.6. Traditional FMECA method for criticality evaluation (Gas turbine)  

For the gas turbine system, the FMECA analysis was performed, as shown in Table 3.7, 

the associated RPN values have been calculated. The failure modes are assessed by providing a 

score to the severity, frequency, and non-detection factors. For this, a ten-level score system is 

employed, as shown in appendix B. An expert opinion is consulted while rating these criticality 

factors. The frequency, severity, and detection scores were employed. According to the 

FMCEA group recommendation, the RPN results allow for prioritizing actions to ensure that 

the gas turbine operates continuously and safely. Due to a lack of data and uncertainty, expert 

opinions were utilized to estimate the criticality factors. 

Table 3.7 Conventional FMECA results 
 

Failure 
mode 

Sequence 
No 

 

Item 

 
Failure 
Mode 

 

 
Failure 
Cause 

 

 

F 

 

S 

 

D 

 
Conventional 

RPN 
  
 

 

Rank 

1  
 
 
 

 
 
 
 

Defective 
vibration 
indication 

2 10 6 120  

7 
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2 Compressor 
(Rotor) 

Vibration 
 

Defective 
bearings 

2 5 3 30 13 

 

3 

 
Over-

temperature 
 

 

Compressor 
rotor dirty 

3 5 4 60 10 

 

4 

 
 
 

Compressor 
(Stator) 

 
 
 
 

Stall 
 

variable 
stator vanes 

Binding 
 

3 6 4 72 9 

 

5 

Foreign 
object 

deteriorate 
 

3 4 5 60 10 

 

6 

 
Combustion 

chamber 
(Fuel 

nozzle) 

 
Flame-out 

 

fuel nozzles 
obstruction 

or   
Partial 

cloggage  

4 6 2 48 12 

 

 

7 

 
 

Combustion 
chamber 

(Flame tube) 

 
 

Hot spots 
on flame 

tube 
 

Flame tube 
cooling 

failure and 
uneven flame 
distribution 

around it 

4 7 2 56 11 

 

8 

 
 
 

Turbine 
(Rotor) 

 
 
 

Vibration 
 

Defective 
vibration 
indication 

 

5 6 6 180 5 

9 Defective 
bearings 

5 8 3 120 7 

 

10 

 
 
 

Ancillary 
system. 

(Fuel system 
components) 

 
Over-speed 

 

High fuel 
flow 

 

6 7 5 210 4 

 

11 

 
No start 

 

water ,Air, 
,or particles 
in fuel lines 

 

2 9 5 90 8 

  
Stall 

irregular fuel 
pressure  

6 8 5 240 3 
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12   

 

13 

Ancillary 
system. 

(Electrical 
system  

 

 

components) 

 
Faulty 

temperature 
indication 

 

Open, short 
circuit in 

thermocouple 
circuit 

 

6 9 3 162 6 

 

14 

 
Not 

reaching 
idle speed 

Low 
electrical 

power 
 

8 

 

9 7 

 

504 

 

1 

15 Defective 
speed 

indication 
 

Internal  
tachometer 

failure 

7 9 6 378 2 

 

3.7. CONCLUSION  

Access to total safety in different industrial activities requires implementation and 

development of HSE management. One of the crucial requirements for HSE management is the 

employment of new methods for the assessment and prioritization of work risks and so are risk 

management and promotion of reliability of processes being increasingly prevalent in the field 

of production and operation management. 

The FMECA method is one of the approaches that used in this field. It enjoys high and 

suitable application and analyzability and these features popularize FMECA as the most 

common technique for risk analysis and safety reinforcement in different organizations. 

In this chapter we have tried to apply the conventional FMECA method for two case study 

and show the effectiveness of this method to determine failure modes and their causes and 

effects for each component. 

Furthermore, it proves in a variety of applications that the FMECA still has several 

shortcomings. In the next chapter we will try to resolve the shortcomings by improving the 

failure mode, effects, and criticality analysis method by suggestion new proposed approaches 

based on two main categories which are multi-criteria decision making (MCDM), and 

Artificial intelligence approaches (AI). 

 

 

 



 

 

Chapter IV 
 Risk evaluation approaches in failure mode and 

effects analysis 
4.1. Introduction 

Catastrophic failures and dangerous consequences on products, processes, equipment, or 

services are often a point of the challenge for any organization. Over the last few years, 

organizations have developed research approaches to reduce or eliminate these sudden 

incidents and to anticipate their related risks at the earlier steps of activity if they still occur. 

For the first time, failure mode effect and criticality analysis (FMECA) was formally 

considered as a safety and criticality evaluation tool 

As we have seen in previous chapters that the FMECA is defined as a method for 

analyzing a process or system to identify possible modes of failure (FMs), their causes, and 

effects on the system/process performance. The risk priority number (RPN) has been used to 

define each failure mode, which is calculated by multiplying three input factors, frequency (F), 

severity(S), and non-detection of failures (ND).  

Furthermore, it proves in different applications that the FMECA still has several 

shortcomings[81, 86]: 

 It’s difficult to have precise numbers to evaluate the criticality value when failure 

modes are assessed in a complicated system. 

 Due to the lack of a full theoretical understanding of its sources, RPN calculating 

function is frequently questioned. 

 The FMECA with the calculation of a single criticality is insufficient for the 

relevance of decision-making. 

 Various combinations of S, F and ND factors may give a similar RPN value. 

However, the criticality evaluation for the failure modes can be vastly dissimilar 

 In the estimation of RPN, the relative importance of criticality parameters is not 

considered. 

 Another drawback of the classical RPN is the specific evaluation of criticality 

parameters regarding each failure mode. However, because of limited data, time 

pressure, or experts’ information processing abilities are limited, risk parameters 
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cannot be specified precisely, and the criticality evaluation information may be 

uncertain or imprecise 

According to the shortcomings cited above we will try in this chapter to improve the use of 

failure mode, effects and criticality analysis by using new proposed modellings especially 

based on multi-criteria decision making (MCDM), and Artificial intelligence approaches (AI). 

 

Part I  
Fuzzy multi-criteria approach for criticality 

assessment and optimization of decision making 
 

4.2. Application of the proposed methodology to the LPG storage system 

in this part , we propose a novel hybridization methodology, which combined with a fuzzy 

multi-criticality approach and analytic hierarchy process (AHP), the latter has not taken many 

critiques and it is known as one of the best and most widely utilized for decision -making, it 

classifies the alternative from the best choice to the worst. The contributions and innovations of 

this model are summarized  

 To avoid the complexity and uncertainty of in-formation, for each failure mode the 

authors replaced the one global criticality calculated from the classical method with 

a fuzzy inference system that offers five different criticalities that efficiently and 

separately calculate the impact of a failure on the environment, personnel, 

production, equipment, and management.  

  Due to the doubts of the fuzzy system (if-then rules limits) that cannot give a 

precise numerical evaluation of criticality, the calculation of the overall criticality 

is based on a combination between AHP method to calculate the different priorities 

weights and the five partial criticalities calculated by the fuzzy inference system.  

 The proposed approach can not only deal with identification, evaluation, and 

ranking failure modes as it was in previous researches, and not  only deal with the 

subjectivity and vagueness but also to improve the aptitude of decision-making by 

trying to implement an action plan “preventive –corrective actions” in order to take 

priority of these actions and comparing their classifications towards each criticality 

importance (environment, personnel, production, equipment, and management) to 
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reduce the frequency of occurrence and the severity of undesirable scenarios and 

safety improvement effectively.   

As we have cited that the idea presented in this work is based on the combination of the 

fuzzy inference system and the analytic hierarchy process (AHP) to calculate the overall 

criticality and improve decision making. Figure 4.1 shows the process of the proposed 

approach. It based on three fundamental steps:  

 1st step: the quantification of the various performance indicators: frequency (F), 

severity (S) (S1, S2… S5), and non-detection (ND) to use them as input variables. 

• Frequency of occurrence: For the quantification of the frequency of 

occurrence the authors used the fault tree method, it is a top-down, 

deductive failure analysis, this analysis method is primarily used in safety 

and reliability engineering to understand how systems can fail, to find the 

best ways to reduce risk. 

• Severity level of failures: The severity quotation scales are based on the 

decree of September 29, 2005 (regarding the frequency assessment, the 

intensity of effects, and the severity under authorization-French regulations) 

and on methodologies specific to the SONATRACH group (appendix C)  

• Probability of non-detection:  The probability of non-detection expresses 

the technological or organizational possibilities for detecting failures before 

the effects occur. Practically, this can be achieved with alarm mechanisms 

or the detection of warning signs. Our indicator is based on statistics and 

analysis of failure histories.  

 2nd step: a fuzzy system inference is called to develop appropriate membership 

functions. The design and development of a fuzzy inference system require the 

adoption of a structured demarche subdivided into three stages mentioned 

previously to ensure a judicious choice of the various parameters to determine the 

different criticalities. The first is “fuzzification”, it involves the choice of the study 

interval for each input (F, S (1,2…5) , ND ) and the different outputs C(1, 2,….5) 

of the system, the number and the type of input/output membership functions must 

be defined and the discourse universe must be normalized. The fuzzy inputs 

resulting from the "fuzzification" are then evaluated by a fuzzy inference engine by 

using the different fuzzy rules to determine the five different criticalities which 



Chapter IV: Risk evaluation approaches in failure mode and effects analysis 

 

81 
 

measure the impact of a failure on the environment, personnel, the production, the 

equipment, and management. The last step is to perform defuzzification using an 

appropriate method.  

 3rd step: AHP method is applied to determine the overall criticality by calculating 

the priorities weights for each partial criticality and by using the values criticalities 

calculated previously, then generating an action plan to improve the decision-

making by prioritizing “preventive –corrective actions” according to the 

importance of the different criticality and seeing what is the efficient action for 

each criticality to re-duce the frequency and the severity of undesirable scenarios.   

Figure 4.1 Flow chart of the proposed approach 
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4.2.1. Quantification of the various input parameters (Step 1) 

The first step to treat the failure mode n°1 is the exploitation and quantification of the 

various performance indicators: frequency, non-detection, and severity. To obtain the 

frequency of occurrence for the undesirable event “loss of confinement” which presents the 

main cause of failure mode 1, the authors used the fault tree method (FTA) shown in figure 

4.2[88]. The FTA combines numerical values of basic events to obtain a precise value of the 

system using logic gates. The numerical values of basic events are calculated by using 

exponential law for an operating time of 720 h; these events' values may also be constant as 

shown in table 4.1. 

                                         
tetF λ−−=1)(                               (4.1) 

Where: ‘λ’ indicates the failure rate as presented in table 4.1. 

Event (P001) =P002 ∪ P003 ∪ P004 ∪ P005 

                         =(N1+N2+N3+N4)+(N5+N6+N7+N8+N9+N10)+N11+(N12+N13+N14+N15) 

Prob [loss of containment in the “LPG Storage” system] = 0.00155084 /hour, (Equal -2.8 

on a logarithmic sc scale). 

The quantification of the other input parameters, severity, and non-detection shown in 

Table 4.2:  
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Figure 4.2 Fault tree analysis for “loss of containment in the LPG system’’ 
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Table 4.1 Data of LPG system components from OREDA 

 

Table 4.2 Data collection table for criticality calculation 
Designations Input data values 

frequency  of occurrence 0.00155084 /hour 
Probability of non-detection (ND) (This 

corresponds to 1 failure not detected 
among 5 failures) 

0.2 

Severity on Personnel 1 
Severity on Equipment 2 

Severity on Environment 3 
Severity on Production 4 

Severity on Management 5 
 

 

4.2.2. Fuzzy system Application to evaluate the five partial criticalities (Step 2) 

By applying the three steps of the inference system mentioned previously, the next stage is 

calculating the different criticalities. The procedure for determining the fuzzy criticality 

consists of using the membership functions trapezoidal-shaped to describe inputs and output 

variables: as given in Figure 4.3.  

Node Component /Events Model frequency 
of 

occurrence 

Failure 
rate 
(λ) 

N1 Lightning Constant 1.0E-5  
N2 Works Constant 1.0E-9  
N3 Earthquakes Constant 1.0E-5  
N4 Roads (traffic) Constant 5.0E-8  
N5 Sudden Closure of 33MOV00002in export 

phase 
Exponential  5.0E-07 

N6 Export pumps  shutdown Exponential  5.0E-11 
N7 failure of 33PV01004 (closing)  on the 

balancing line  of the spheres 
Exponential  2.0E-07 

N8 Failure of  33PV01019 (closing) while the 
export phase 

Exponential  2.0E-07 

N9 Fire case Constant 8.0E-05  
N10 Sudden Closure of 33ESDV00001 Exponential  3.4.0E-07 
N11 Sudden Closure of 33MOV00001 in 

progress Filling 
Exponential  5.0E-07 

N12 Vibrations Constant 4.0E-05  
N13 Aging Constant 1.7.0E-07  
N14 Corrosion Constant 1.5.0E-04  
N15 Erosion Constant 8.0E-06  
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Frequency (F) is given by five fuzzy sets: rare, occasional regular, systematic, very-high 

defined on a space ranging from 10-6 to 1 represented in figure 4.3(a) as a logarithmic scale. 

Severity (s) is represented by five fuzzy sets: very-low, low, normal, serious, very-Serious 

defined on a Severity space ranging from 1 to 5 (figure 4.3(b))  

Non-detection (ND) is represented by five fuzzy sets, namely: very-low, low, medium, 

high, very-high represented on a space from 0 to 1 (figure 4.3 (c)). 

 The criticality (C), as the only output variable, is defined on ranging from 0 to 1 and is 

represented by five fuzzy sets: very-low, low, normal, high, very high (figure 4.3(d)).  

In this case the different criticalities are determinated based on 125 rules bases. Mamdani’s 

inference system is used to derive the criticality values, figure 4.4 shows the obtained results 

(case of equipment criticality for Severity= 2). 

 
          a) 
 

 
           
              
 
 
  b) 
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    c) 
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Figure 4.3 Membership functions generated for (a) frequency, (b) Severity 
and (c) non-detection (d) criticality 
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Figure 4.4 Fuzzy inference process: case of criticality on equipment. 
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By applying the same methodology for all criticalities, the results given in table 4.3: 

Table 4.3Criticalities obtained from fuzzy inference engines 
Criticality values 

Criticality on Personnel (C1) 0.250 
Criticality on Equipment (C2) 0 .343 

Criticality on Environment (C3) 0.460 
Criticality on Production (C4) 0.500 

Criticality on Management (C5) 0.923 
 

4.2.3. Application of the AHP method to evaluate the overall criticality and 

improving the decision-making (Step 3) 

Based on the experts and responsible judgments, it has been determined that the 

criticalities C1 and C5 have effects more important than the other. The details of the judgments 

are presented in table 4.4. 

Table 4.4 Comparison matrix for criteria 
 C1 C2 C3 C4 C5 

C1 1 3 5 3 1 
C2 0.33 1 2 3 0.2 
C3 0.2 0.5 1 2 0.33 
C4 0.33 0.33 0.5 1 0.2 
C5 1 5 3 5 1 

By considering step 3 of the AHP method and applying the equation (3.2, 3.3 and 3.4), a 

new matrix has obtained representing the priorities of the Different judgments (table 4.5): 

Table 4.5The arithmetic priority of judgments 
 C1 C2 C3 C4 C5 Sum priorities 

C1 0.35 0.3 0.43 0.21 0.36 1.65 0.335 

C2 0.11 0.1 0.17 0.21 0.07 0.66 0.133 

C3 0.08 0,07 0.09 0.14 0.12 0.5 0.091 

C4 0.11 0,03 0.05 0.09 0,09 0.37 0.065 

C5 0.35 0.5 0.26 0.35 0.36 1.82 0.376 

Sum 1 1 1 1 1 5 1 
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As an example the first weight w11 and priority p1 are calculated as follows: 
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By using the different criticalities obtained in table 4.3 and the priorities of table 4.5, the 

overall criticality estimation for the proposed approach is calculating as follows: 

GC1=P1×C1+ P2×C2+ P3×C3+ P4×C4+P5×C5 

GC1=0.250×0.335+0 .343×0.133+0.460×0.091+0.500×0.065+0.923×0.376=0.550 

Table 4.6Criticality weights factors 
Criteria Values Weighting 

factors 
Wi 

Estimated 
overall 

criticality 
GC1 

Classical 
FMECA 

Criticality 
GC2 

C1 0.250 0.335  
 

CG1=0.550 

 
From table 3.5 

CG2=27compared   
to 64 

is:0.42 

C2 0 .343 0.133 
C3 0.460 0.091 
C4 0.500 0.065 
C5 0.923 0.376 

 

The minimum criticality being defined as 0.45, corrective and preventive actions must be 

taken. Thus, we have to repeat the same criticality procedure for the next level which concerns 

the aggregation of the different types of actions. “Preventive –corrective actions” are presented 

as follows to improve the relevance of the decision-making: 

 Technical Safety Barriers: safety instrumented System as (Emergency isolation and 

depressurization system, level switch high high, pressure switch high high ), the 

different Safety devices…(TA1). 

 Methodological decisions: implementation of procedures and operating modes, Use 

of appropriate software for this procedure while linking it to computer databases, 

changes in process parameters as controls and planning frequencies, 

cadence...(TA3) 
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 Manual Action Systems of security: active protection against the fire, emergency 

shutdown button, manual closure of a safety valve… (TA4). 

 Means deployment actions: Purchase of personal protective equipment, 

Recruitment of engineers specializing in industrial maintenance, a regular 

preventive maintenance program of equipment, training, and awareness-raising for 

operators, internal policies aimed at establishing and maintaining a rigorous culture 

of security and risk management (TA5). 

 According to brainstorming sessions, the type of actions are compared across to each 

criterion (table 4.7), then by considering the last step of the AHP method the priorities of the 

alternatives concerning all criteria are summarized in table 4.8 

Table 4.7.Comparison matrix for alternatives versus criteria 
personnel TA1 TA2 TA3 TA4 TA5 

TA1 1 0.2 0.33 0.16 0.12 
TA2 5 1 2 1 1 
TA3 3 0.5 1 0.33 0.25 
TA4 6 1 3 1 0.5 
TA5 8 1 4 2 1 

Equipment TA1 TA1 TA1 TA1 TA1 
TA1 1 3 5 8 9 
TA2 0.33 1 7 5 8 
TA3 0.2 0.14 1 4 3 
TA4 0.12 0.2 0.25 1 5 
TA5 0.11 0.12 0.33 0.2 1 

Environment TA1 TA2 TA3 TA4 TA5 
TA1 1 1 3 4 6 
TA2 1 1 2 6 4 
TA3 0.33 0.5 1 2 3 
TA4 0.25 0.16 0.5 1 1 
TA5 0.16 0.25 0.33 1 1 

production TA1 TA2 TA3 TA4 TA5 
TA1 1 2 7 3 4 
TA2 0.5 1 6 3 5 
TA3 0.14 0.16 1 0.5 2 
TA4 0.33 0.33 2 1 1 
TA5 0.25 0.2 0.5 1 1 

management TA1 TA2 TA3 TA4 TA5 
TA1 1 6 7 7 8 
TA2 0.16 1 1 3 4 
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TA3 0.14 1 1 2 2 
TA4 0.14 0.33 0.5 1 2 
TA5 0.12 0.25 0.5 0.5 1 

 

Table 4.8 Global priority vector for different types of decisions 
 C1 

(0.335) 
C2 

(0 .133) 
C3 

(0.091) 
C4 

(0.065) 
C5 

(0.376) 
Priorities 

TA1 0.042 0.485 0.367 0.421 0.617 0.371 
TA2 0.250 0.314 0.339 0.320 0.149 0.233 
TA3 0.103 0.105 0.156 0.075 0.114 0.111 
TA4 0.243 0.065 0.072 0.110 0.070 0.130 
TA5 0.363 0.030 0.066 0.074 0.049 0 .155 

 

To obtain a precise analysis of the results above the “expert choice software" has been 

used; it simplifies the implementation of the AHP method. Its general objective is to see 

graphically how the alternatives change according to the importance of the criteria. There are 

five types of analyzes: Performance Sensitivity, dynamic sensitivity, gradient sensitivity, head-

to-head sensitivity, and two-dimensional sensitivity. In our case study, we analyze the results 

based on the performance and gradient sensitivity graphs  

 

Figure 4.5 Performance sensitivity graph
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Figure 4.6 Gradient sensitivity graph for equipment 

 

Figure 4.7 Gradient sensitivity graph for personnel 
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Results analysis 

The results obtained are interesting, as we noted earlier that the triggering threshold for 

corrective actions is defined as a minimum criticality equal to 45 which corresponds to 0.45 in 

the discourse universe [0.1]. In effect, it can be demonstrated from the real case that the 

FMECA method with (criticality = 0.42) did not lead to activate the corrective- preventive 

actions plan. On the other hand, a new fuzzy multi-criticality approach allows to a better and 

precise evaluation of the five criticalities and consequently the overall criticality (CG = 0.55) 

which was greater than 0.45 and that results in the triggering of action plans and types of 

decisions, This allowed to bring out the deficiencies in the estimation of the conventional 

FMECA method. 

The inference engines, although simple in this case, made it possible to capitalize on the 

experience of the company. The different rules (Ri) constructed have allowed popularizing the 

influence of the FMECA parameters on each criticality. This gave more credibility to the 

criticality analysis since it is no longer about multiplying factors but rather building a 

conditional structure leading to significant criticalities. 

For the company's executives, this technique allowed to improve communication 

mechanisms and experience exchanges. In fact, the case study provided an opportunity to 

guide judgments and adopting clear criteria allowing decision support. Thus, the AHP 

strategy assisted in bringing concepts closer together and showing the accuracy of the criteria, 

as well as evaluating the overall criticality which was critical in convincing management to 

take the identified actions. 

Regarding the improvement of decision-making by prioritizing “preventive –corrective 

actions” and determining the most effective action for each criticality, a performance 

sensitivity graph (figure 4.5) clarifies the results provided in table 4.8 and shows that the 

technical safety barriers could be suggested decision-makers as a more appropriate alternative 

from all the alternatives with a priority of 0.371 followed by the type of action 2, type of 

action 5, type of actions 4, type of action 3, respectively. This does not imply that "action plan 

1" is the best on all criteria it can be observed that the technical safety barriers are the best in 

only with the four criteria, equipment, environment, production, management, while it ranks 

fifth on the other criterion.  

To clarify the results more, a gradient sensitivity graph is used as presented in figure 4.6 

The case of equipment (C2) shows that when the importance is not critical (Priority = 0), the 

type of decision 3 is still the worst choice from all of the other types of action with a priority 
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of 0.111 However, if the equipment is extremely important (Priority = 1), technical safety 

barriers are far and away the efficient choice to control the criticality with a priority of 0.48. 

So, any smallest change in the weight of the criteria values that changes the current ranking of 

alternatives. As can be seen, the slope (direction and steepness) of the curve for each option 

indicates its dependence on the criteria. Not also, that alternative 3 is almost unaffected by the 

change in equipment criterion its curve is almost flat. 

 The case of personnel (C1) shown in figure 4.7 depicts that if the priority of criticality on 

personnel is adjusted upwards from 0 to 0.6, the type of action 5 comes out on top. However, 

if the weight of criticality1is larger than 0.6 the type of decision 5 becomes the most favorable 

alternative to ensure the safety of personnel with a priority from 0.225 to 0.363 , This result 

makes a sense represented in the effectiveness of the type of action 5 based principally on 

training, awareness-raising and regular interview program versus the criticality on personnel 

protection, however; the actions 1,3 are the worst choice and actions 2,4 are almost equal and 

being somewhere in between. 

 
Part II 

Failure mode, effects, and criticality analysis 
improvement by using new criticality assessment and 

prioritization based approach 
 

 4.3. Application of the proposed methodology to the gas turbine system 

This part aims to enable the analysts of reliability and safety system to assess the 

criticality and prioritize failure modes perfectly to prefer actions for controlling the risks of 

undesirable scenarios. 

To resolve the challenge of uncertainty and ambiguous related to the parameters, 

frequency, non-detection, and severity considered in the traditional approach FMECA for risk 

evaluation, the authors utilized fuzzy logic where these parameters are shown as members of a 

fuzzy set which fuzzified by using appropriate membership functions. The ANFIS process is 

suggested as a dynamic, intelligently chosen model to ameliorate and validate the results 

obtained by the fuzzy inference system and effectively predict the criticality evaluation of 

failure modes. A new hybrid model is proposed that combines the grey relational approach 

(GRA) and fuzzy analytic hierarchy process to improve the exploitation of the FMECA 

conventional method. 
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To resolve the shortcomings of FMECA method and improving its use, the novelty of this 

work are:  

 To avoid the complexity and decrease the uncertainty of the judgments, for each 

failure mode, the authors replaced criticality calculated from the classical method 

with a fuzzy inference system. The latter can treat different types of ambiguities 

and uncertainty in assessing failure modes respectfully to the criticality factors. 

During modelling, by the imprecise linguistic expressions and the fuzzy inference 

system, human expertise is incorporated. The ability to grasp inference systems 

empowers users and professionals to customize them effectively  

  An adaptable neural network-based fuzzy inference system is created to compare 

and validate the results obtained by fuzzy inference system assessment; it's simple 

to combine both numeric and linguistic knowledge in order to solve the fuzzy 

problem produced. By training the neural network to apply the fuzzy rule base of 

human experts, the ANFIS system is anticipated to identify previously undetected 

decisions. 

 Different approaches can give different prioritizations, and every approach has its 

disadvantages and advantages. Consequently, the integration of two multi-criteria 

decision methods and incorporating their results enables to instill confidence in 

decision-makers regarding to the criticality prioritizations results of failure modes, 

especially when dealing with complicated systems. Wherefore, in this research, a 

novel hybrid approach that combines the grey relational approach (GRA) and 

fuzzy analytic hierarchy process may solve this problem. This approach gives an 

alternate prioritizing for the failure modes and allows overcoming the 

shortcomings concerning the lack of established inference rules which necessitate 

a good deal of expertise, and shows the weightage or importance for the severity, 

non-detection, and the frequency which are considered to have equal importance 

in the traditional method. 

4.3.1. Failure mode analysis by fuzzy methodology 

The RPN values are calculated using the fuzzy inference technique to represent the fuzzy 

theory sets. As given previously, the process comprises one output and three input variables. 

The inference engine determines the RPN by incorporating three input factors. A Gaussian 

membership function is used for input variables to generate real numbers to fuzzy sets, given 

by equation 17. Trapezoidal and triangular membership functions are used for the output 

variable (equation 3.18, 3.19, and 3.20)
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Five and six levels are utilized for input and output variables, respectively, as given in 

figures 4.8, 4.9. Expert opinion is employed as language terms for the frequency, detection, 

and severity values of failures. As shown in the appendix D, twenty-seven rules are used to 

determine criticality priority in the inference system. 

The Mamdani min/max approach was used for inference, while the gravity center 

technique was utilized for defuzzification (see equation 3.24). The gravity center method is 

described as a centroid defuzzification method for determining the fuzzy set's center of 

gravity point on the fuzzy interval. The traditional and fuzzy risk priority number results are 

presented in Table 4.9. 

 
 

 

Figure 4.8 Membership functions generated for, probability, Severity and 
non-detection  

 

Figure 4.9 Membership functions of output variable “criticality” 
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Table 4.9 Conventional FMECA and fuzzy RPN results 
 

Failure 
mode 

Sequence 
No 

 

Item 

 
Failure 
Mode 

 

 
Failure 
Cause 

 

 

F 

 

S 

 

D 

 
Conventional 

RPN 
  
 

 

Rank 

 

Fuzzy 

RPN 

output 

 

rank 

1  
 
 
 

Compressor 
(Rotor) 

 
 
 
 

Vibration 
 

Defective 
vibration 
indication 

2 10 6 120 7 0.455 7 

2 Defective 
bearings 

2 5 3 30 13 0.20 15 

 

3 

 
Over-

temperature 
 

 

Compressor 
rotor dirty 

3 5 4 60 10 0.249 13 

 

4 

 
 
 

Compressor 
(Stator) 

 
 
 
 

Stall 
 

variable 
stator vanes 

Binding 
 

3 6 4 72 9 0.272 12 

 

5 

Foreign 
object 

deteriorate 
 

3 4 5 60 10 0.231 14 

 

6 

 
Combustion 

chamber 
(Fuel 

nozzle) 

 
Flame-out 

 

fuel nozzles 
obstruction 

or   
Partial 

cloggage  

4 6 2 48 12 0.356 10 

 

 

7 

 
 

Combustion 
chamber 

(Flame tube) 

 
 

Hot spots 
on flame 

tube 
 

Flame tube 
cooling 

failure and 
uneven flame 
distribution 

around it 

4 7 2 56 11 0.368 9 

 

8 

 
 
 

Turbine 

 
 
 

Vibration 

Defective 
vibration 
indication 

 

5 6 6 180 5 0.457 6 
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9 (Rotor)  Defective 
bearings 

5 8 3 120 7 0.447 8 

 

10 

 
 
 

Ancillary 
system. 

(Fuel system 
components) 

 
Over-speed 

 

High fuel 
flow 

 

6 7 5 210 4 0.5 5 

 

11 

 
No start 

 

water ,Air, 
,or particles 
in fuel lines 

 

2 9 5 90 8 0.307 11 

 

12 

 
Stall 

 

irregular fuel 
pressure  

 

6 8 5 240 3 0.531 4 

 

13 

 
 
 
 

Ancillary 
system. 

(Electrical 
system 

components) 

 
Faulty 

temperature 
indication 

 

Open, short 
circuit in 

thermocouple 
circuit 

 

6 9 3 162 6 0.572 3 

 

14 

 
Not 

reaching 
idle speed 

Low 
electrical 

power 
 

8 

 

9 7 

 

504 

 

1 0.758 1 

15 Defective 
speed 

indication 
 

Internal  
tachometer 

failure 

7 9 6 378 2 0.667 2 

 

4.3.2. Failure mode analysis by an adaptive neural fuzzy inference system 

This part describes the development of the ANFIS system to evaluate the failure modes 

for criticality ranking. A comparison with fuzzy criticality assessment methodology is also 

used to estimate the efficacy and validity of this model. 

The number of membership functions (MFs) was defined for (5, 5, 5), representing that 

each input has five linguistic. To evaluate the relations between input, frequency, severity, 

and non-detection and output variables, trapezoidal and Gaussian membership functions were 

used. 

The data is subdivided into two sets: the training and checking data set. The training 

process utilized equations (3.26, 3.27, 3.28, 3.29, and 3.30) of five layers; while, the checking 

data were have been used to verify that the trained ANFIS model was accurate and effective 

in adapting learning content. By using a hybrid method to update membership function 
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parameters, training error was reduced. Then, checking data is utilized to test the fuzzy 

inference system's generalization capability at each epoch. The checking error keeps track of 

the RMSE at each epoch for the checking data. 

Figures 4.10 and 4.11 present the trained and checked output of the ANFIS model; it can 

see that it looks satisfactory. The final training and checking error is produced (figure4.12), 

the graph represents the checking error on the top side, and the training error appears on the 

bottom. It also shows that training stopped in the 300nd epoch and the minimum checking 

error obtained for modeling system criticality evaluation is 0.0244.  

The failure modes evaluation and ranking by the ANFIS system is shown in table 4.10 . 

 
 

Figure 4.10 training data 
 

 
 

Figure 4.11 checking data 
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Figure 4.12 Training and checking data errors for the ANFIS model 
 
 

 

Table 4.10 neuro-fuzzy RPN results 
 

Failure 
mode 

Sequence 
No 

 

Item 

 
Failure 
Mode 

 

 
Failure 
Cause 

 

 

F 

 

S 

 

D 

 

ANFIS 

RPN 

output 

 

RANK 

1  
 
 
 

Compressor 
(Rotor) 

 
 
 
 

Vibration 
 

Defective 
vibration 
indication 

2 10 6 0.4355 7 

2 Defective 
bearings 

2 5 3 0.2191 15 

 

3 

 
Over-

temperature 
 

 

Compressor 
rotor dirty 

3 5 4 0.2508 13 

 

4 

 
 
 

Compressor 
(Stator) 

 
 
 
 

Stall 
 

variable 
stator vanes 

Binding 
 

3 6 4 0.2725 12 

 

5 

Foreign 
object 

deteriorate 
 

3 4 5 0.2214 14 

  
Combustion 

 
Flame-out 

fuel nozzles 
obstruction 

4 6 2 0.3333 11 
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6 chamber 
(Fuel 

nozzle) 

 or   
Partial 

cloggage  

 

 

7 

 
 

Combustion 
chamber 

(Flame tube) 

 
 

Hot spots 
on flame 

tube 
 

Flame tube 
cooling 

failure and 
uneven flame 
distribution 

around it 

4 7 2 0.3746 9 

 

8 

 
 
 

Turbine 
(Rotor) 

 
 
 

Vibration 
 

Defective 
vibration 
indication 

 

5 6 6 0.4292 8 

9 Defective 
bearings 

5 8 3 0.4439 6 

 

10 

 
 
 

Ancillary 
system. 

(Fuel system 
components) 

 
Over-speed 

 

High fuel 
flow 

 

6 7 5 0.4970 5 

 

11 

 
No start 

 

water ,Air, 
,or particles 
in fuel lines 

 

2 9 5 0.3347 10 

 

12 

 
Stall 

 

irregular fuel 
pressure  

 

6 8 5 0.5378 4 

 

13 

 
 
 
 

Ancillary 
system. 

(Electrical 
system 

components) 

 
Faulty 

temperature 
indication 

 

Open, short 
circuit in 

thermocouple 
circuit 

 

6 9 3 0.5792 3 

 

14 

 
Not 

reaching 
idle speed 

Low 
electrical 

power 
 

8 

 

9 7 

 

0.7406 1 

15 Defective 
speed 

indication 
 

Internal  
tachometer 

failure 

7 9 6 0.6855 2 
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4.3.3. Failure mode analysis by Proposed Grey modeling 

As mentioned previously, several shortcomings in using the FMECA method concerning 

the vagueness and subjectivity in failure modes assessment, other limitation regarding the lack 

of established inference rules which necessitate a good deal of expertise. As a result of 

different weight combinations, different ranking results may occur. It is improbable that all 

decision-makers will easily reach a consensus on an adequate set of weights. A new approach 

that combines the grey relational approach (GRA) and fuzzy analytic hierarchy process is 

suggested to solve these disadvantages. The suggested approach can be obtained by the 

following steps (figure 4.13). 

4.3.3.1. Recognizing Comparative Series 

The comparative series is an information series that includes values for the frequency, no-

detection, and severity. The comparative series comprises the three factors above is presented 

following equation (3.10). 

Where m denotes the criticality factors number and n is the failure modes number. zi (m) 

indicates the mth factors of zi and the n information series as shown in equation (3.11). 

4.3.3.2. Standard series identification 

The objective of identifying the standard series is to deduce the degree of relation; it 

represents the optimal level of all decision parameters. Standard series can be explained 

following equation (3.12). 

4.3.3.4. Obtain the difference between comparative and standard series as shown 

in (3.13).  

4.3.3.4. Compute the Grey Relationship Coefficient 

Three failure mode criticality parameters are compared to the standard series. The Grey 

relational coefficient for F, ND and, S is calculated by flowing equation (3.14) 

4.3.3.5. Integrate the weighted factors to determine the degree of relation  

If each criticality factor has equal importance equation (3.15) is used to determine the 

degree of relation .If the criticality parameters have different importance equation 3.16 is used  

Where β(m) denotes the criticality factor weights. To calculate the risk factor weights 

fuzzy AHP Process was utilized in the next stage. 

4.3.3.5. 1.Fuzzy Analytic Hierarchy Process 

AHP has been designed by[89]. It is an effective method for resolving problems of 

decision. It ranks the importance of criteria using pair-wise comparisons. Buckley combined 

the AHP into fuzzy theory, called Fuzzy AHP[90] .In fuzzy AHP, to respond with ambiguity 

and subjectivity in pair-wise comparison, the ability of AHP has been improved. Instead of a 
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crisp value, fuzzy AHP utilizes a domain of values to combine the decision maker's 

uncertainties [91]. The Fuzzy Analytic Hierarchy process procedure is presented as follows: 

 Step 1: A pair-wise comparison matrix is created, as shown in equation 3.7. Using 

expert questionnaires, the expert is requested to give linguistic variables to pair-

wise comparisons across all criteria using triangular fuzzy numbers figure 3.2.   

 Step 2: For each criterion, compute the fuzzy geometric mean as shown in 

equation 3.8. 

 Step 3: Normalization is used to calculate the fuzzy weights. Equation  3.9  can be 

used to calculate the fuzzy weight of the ith criteria : 

4.3.3.6. Criticality Priority Ranking  

The failure modes are ranked in ascending order by the degree of relation. The failure 

modes with the smallest degree of grey relation are given the most priority[92]. 
 
 
 
 
 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 4.13 Flow chart of the proposed approach 
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As a multi-criteria process, the criticality ranking is obtained by using the grey relational 

analyses. This latter is used to produce the prioritization strategy and replaced the rule base 

utilized in the fuzzy system. Grey relational analyses method was used in order to resolve 

these problems for rank and prioritize the failures mode effectively in the lack of a rule 

establishment. 

FMECA data from table 4.9 is used in this section, and the GRA method is applied 

with various cases (criticality parameters have different and equal weights). FAHP method is 

used for determining the criticality factors weights based on expert decisions. 

The first step is to establish comparative series according to different factors, frequency, 

severity, and non-detection by the following matrix.   
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Equation 3.13 yields the difference between the standard and comparative series, which is 

represented as the matrix below. 
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As previously mentioned the grey relationship coefficient is determined by the equation 

3.14, According to the equation If ∆max=9, ∆min=1 and ζ is 0.5,
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If all criticality parameters are given equal weights, equation 3.15 is applied to find the 

relation degree. For example; the 1st failure mode is determined as; 

660.0)58.04.01(
3
1))3()2()1((

3
1)( 010101 =++=++= γγγτ ki  

The second case is the factors have different weights; the fuzzy AHP method is called to 

specify weights to the criticality parameters. Experts have compared the importance of the 

criticality factors with triangular fuzzy values to overcome the uncertainty associated with the 

experts' judgment. The fuzzy AHP scales are shown in the appendix E. The pairwise 

comparison is given as: 
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Then the geometric mean method is used to calculate the fuzzy weight for each criterion 

by using (equation 3.8, 3.9), the results shown in table 4.11. 

Table 4.11Fuzzy pair wise comparisons to calculate weights 
  

Frequency 
 

Non-detection 
 

Severity 
 

Fuzzy geometric 
mean value ri 

Fuzzy 
weights 

wi 
 

Frequency 
 

(1,1,1) (
7
1 , 

6
1 , 

5
1 ) (

9
1  ,

9
1 , 

8
1 ) 

 
(0.251 0.264 0.292) 

 

 
0.05 

 
Non-detection 

 
(5,6,7) 

 
(1,1,1) (

9
1  ,

8
1  ,

7
1 ) 

 
(0.822 0.908 1) 

 
0.173 

Severity (8,9,9) (7,8,9) (1,1,1) (3.825 4.16 4.32) 0.777 
 

So the weights of the frequency, detection, and severity are 0.05, 0.1730.777 respectively. 

Through Eq(3.16), the degree of relation is obtained and the all results shown in table 4.12. 
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Table 4.12Ranking comparison between conventional, fuzzy, ANFIS and 

GRA proposed approach 
 
 
 
 
 
Failure 
mode  

No 

 
 
 
 
 

Failure  
Mode 

 

 
 
 
 
 

Failure 
Cause 

 

 
 
 
F 

 
 
 
S 

 
 
 
D 

C
on

ve
nt

io
na

l 
R

PN
 

 
ra

nk
 

   
   

 fu
zy

y 
R

PN
 

R
an

k 

A
N

FI
S 

   
   

   
   

R
PN

 
 

R
an

k 

 
 
 

GRA 
with 

similar 
weighs 

R
an

k 

 
 

GRA 
with 

different 
Weights 

 

   
   

   
 R

an
k 

1  
 
 
 

Vibration 
 

Defective 
vibration 
indication 

2 10 6 120 7 0.455 7 0.435 7 0.660  
8 

0.461  
2 

2  
Defective 
bearings 

2 5 3 30 13 0.200 15 0.219 15 0.831 14 0.622  
 
11 

 
3 

 
Over-

temperature 
 

 
Compressor 
rotor dirty 

3 5 4 60 10 0.249 13 0.250 13 0.737  
11 

0.666  
14 

 
4 

 
 
 
 

Stall 
 

variable 
stator vanes 

Binding 
 

3 6 4 72 9 0.272 12 0.272 12 0.718  
10 

0.619  
10 

 
5 

Foreign 
object 

deteriorate 
 

3 4 5 60 10 0.231 14 0.221 14 0.737  
11 

0.600  
9 

 
6 

 
Flame-out 

 

fuel nozzles 
obstruction 

or   
Partial 

cloggage  

4 6 2 48 12 0.356 10 0.333 11 0.771  
13 

0.660  
13 

 
 

7 

 
 

Hot spots 
on flame 

tube 
 

Flame tube 
cooling 

failure and 
uneven 
flame 

distribution 
around it 

4 7 2 56 11 0.368 9 0.374 9 0.751  
12 

0.649  
 
12 

 
8 

 
 
 

Vibration 
 

Defective 
vibration 
indication 

 

5 6 6 180 5 0.457 6 0.429 8  
0.567 

 
 
3 

0.583  
 
8 

9 Defective 
bearings 

5 8 3 120 7 0.447 8 0.443 6 0.653  
7 

0.544  
 
7 

 
10 

 
Over-speed 

 

High fuel 
flow 

 

6 7 5 210 4 0.500 5 0.497 5 0.580  
4 

0.544  
7 

 
11 

 
No start 

 

water 
,Air,or 

particles in 

2 9 5 90 8 0.307 11 0.334 10 0.693  
9 

0.500  
4 
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fuel lines 
 

 
12 

 
Stall 

 

irregular 
fuel 

pressure  
 

6 8 5 240 3 0.531 4 0.537 4  
0.600 
 

 
5 

0.512  
5 

 
13 

 
Faulty 

temperature 
indication 

 

Open, short 
circuit in 

thermocoup
le circuit 

 

6 9 3 162 6 0.572 3 0.579 3 0.620  
6 

0.516  
6 

 
14 

 
Not 

reaching 
idle speed 

Low 
electrical 

power 
 

8 
 

9 7 
 

504 
 

1 0.758 1 0.740 1 0.480  
1 

0.456  
1 

15 Defective 
speed 

indication 
 

Internal  
tachometer 

failure 

7 9 6 378 2 0.667 2 0.685 2 0.513  
2 

0.468  
3 

 

Results and discussion 

Table 4.12 represents the results of the various methods of analysis for the gas turbine 

system. As seen previously in the conventional FMECA method, the RPN number is 

estimated by multiplying each failure mode's factor scores. The system FMECA assists us in 

producing prevention both at the functioning levels and system conception to prevent 

the failure mode criticality. Then, a similar strategy is used for other elements and sub-

systems. According to the findings, safety amelioration activities at various stages of 

processes were proposed. 

As shown in Table 4.12 that the ranking of failures mode acquired from the classical 

FMECA is arranged as FM14, FM15 FM12, FM10, FM8, FM13, (FM9, FM1), FM11, FM4, (FM5, 

FM3), FM7, FM6, FM2, respectively. While, after using fuzzy criticality evaluation gave a new 

ranking of the failures mode. For instance, in the conventional method, FM13 is placed in the 

sixth ranking. However, it classifies at the third ranking in the fuzzy approach. At the same 

time, in both the approaches, FM14 is the farthest critical mode. 

By comparing the classical results of FMECA with the fuzzy approach, the limitations 

associated with traditional FMECA can clearly observed; the most critical drawback of the 

conventional method is that the different combinations of three parameters ratings generate a 

similar RPN value; while, the criticality representations can be dissimilar, For example, 

FM3and FM5 have the same RPN of 60, while the criticality consequences of any of these 

events can not precisely be the same, but the fuzzy inference differs in those, and it would be 

helpful for defining priority on those causes. The second constraint of the classical method 
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ignores the importance between F, ND, and S factors. The three inputs are supposed to have 

equal importance but the relative importance between the inputs exists in real applications; for 

example, as shown in table FM13 with a moderate probability of occurrence, very high 

severity, and low detection (6, 9, 3) with a lower RPN of 162 than one with all parameters 

moderate as FM8 (5, 6, 6) with RPN 180; Conversely with the fuzzy system inference can be 

clearly showed that FM13 has a higher value than FM8with values 0.572, 0.457 respectively, 

and so will be have a higher priority for corrective-preventive measures. 

To compare and evaluate the efficiency and validity of the performances of the fuzzy 

criticality assessment approach, which considers the evaluation process's uncertainty and 

ambiguity and gives a more reliable solution, an ANFIS ranking model shown in table 4.12 

that the failure modes' priority ranking obtained is approximate to the one determined by the 

fuzzy approach except for a few failure modes whose priority order is reorganized. The 

ANFIS system also shows that it can competently predict criticality assessment of failures 

mode. 

Regarding the proposed grey relation analysis approach, the priority order has been 

noticed to vary compared with the previous approach. For instance FM14, FM15 have higher 

ranking importance in all approaches (the most critical failures mode). However, FM13 has 

lower ranking importance in the proposed approach and a higher ranking in other approaches. 

The significant reasons are explained by the various criticality evaluation approaches and 

ranking processes used in such methods. 

Table 4.12 shows the weightage or importance of the three parameters frequency, non 

detection, and severity among the grey proposed approach. The importance weights are being 

used to make the proposed FMECA methodology more efficient, realistic, and adaptive. 

When different weighting factors are used, there is a remarkable rearranging in the failure 

modes ranking, indicating their significance. Changing the weights can be easy to readjust the 

approach in the situation of requests resulting from changes or variations. The grey relation 

method is utilized in the lack of specified inference rules that necessitate a lot of experience. 

4.4. Conclusion  

It can be concluded that the results obtained by the use multi-criteria decision making 

(MCDM) approaches and artificial intelligence model of gas turbine and LPG storage system 

showed the effectiveness of the proposed modeling to improve the use of the conventional 

FMECA regarding the criticality estimation and improve decision-making by prioritizing 
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“preventive –corrective actions” and determine the efficient action for each partial criticality 

to control the risk  

The obtained results show that the integration of two multi-criteria decision methods and 

incorporating their results enable to instill confidence in decision-makers  

this case study application is providing encouraging results regarding the risk evaluation 

and prioritizing failures mode and decision makers guidance to refine the relevance of 

decision making in order to reduce the probability of occurrence and the severity of the 

undesirable scenarios with handling different forms of ambiguity, uncertainty, and divergent 

judgments of experts 



 

110 
 

GENERAL CONCLUSION 

The main purpose of this work is to improve the use of the conventional failure mode, 

effects, and criticality analysis as a decision support tool in the field of dependability by study 

the contribution of fuzzy artificial intelligence (Adaptive neuro-fuzzy inference system and 

Fuzzy logic) and multi-criteria decision making methods the grey relational approach (GRA) 

and fuzzy analytic hierarchy in the risk evaluation and prioritizing failures mode and decision 

makers guidance to refine the relevance of decision making in order to reduce the probability 

of occurrence and the severity of the undesirable scenarios with handling different forms of 

ambiguity, uncertainty, and divergent judgments of experts 

Realized work 

The proposed approaches were used in this work is to improve the decision making 

regarding to the criticality assessment and prioritize failure modes perfectly to prefer actions 

for controlling the risks of undesirable scenarios. 

Compared with the conventional method, the merits of fuzzy based criticality assessment 

methodology allow experts to more flexibly and objectively combine the frequency, non- 

detectability, and severity of failures mode by using their judgment to overcome the 

difficulties arising in performing the standard FMECA procedure. 

The inference engines, although simple in this case, made it possible to capitalize on the 

experience of the company. The different rules (Ri) constructed have allowed popularizing the 

influence of the FMECA parameters on each criticality. This gave more credibility to the 

criticality analysis since it is no longer about multiplying factors but rather building a 

conditional structure leading to significant criticalities. 

Our contribution adds a more factual vision in the field of dependability. Indeed, the 

interactions of systems based on fuzzy logic and multi-criteria decision analysis (AHP) allow 

better appreciating of criticality and guiding decision-makers to anticipate internal and 

external effects. This approach is particularly tolerant with inaccuracies of input data; the 

rejection of contradictory information is then reduced. 

Fuzzy Analytic Hierarchy and GRA methods are used together in this work to evaluate 

and rank the criticality more realistic and effective. The findings may offer essential 

conclusions in the decision-making process. The results show that the integration of FAHP 

and GRA method can provide a more precise, acceptable criticality ranking order. 

Additionally, the usage of the suggested approach can be utilized when the preset inference 
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rules are insufficient which ordinarily necessitate a great deal of experience. This model is 

easily adjusted to process changes which raise the approach's applicability 

 Case study of LPG storage and gas turbine system showed the applicability of the 

proposed modellings by providing encouraging results regarding the estimation of criticality 

and decision-makers’ guidance to refine the relevance of decision making. This was decisive 

in convincing the company to take the actions cited above and choose the best choice from the 

different alternatives in order to reduce the frequency of occurrence and the severity of the 

undesirable scenarios and improve the detectability. 

This research work offers new future research and many possible perspectives. It will 

focus on using artificial intelligence techniques in integration with multi-criteria decision- 

making methods to improve the abilities of FMECA. Algorithms of deep learning will be 

utilized to learn criticality parameters weights from the criticality evaluations and optimize 

the number of inference rules, using learning and observations on the results of criticalities 

and the effects of decision types. For the failure modes, neural networks can also enable multi 

criteria decision-making methods to reflect variation in the criticality ranking. 
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Appendix A 
Table A1. Table of random indices 

Number 
of 

criteria 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

RI 

 

0 

 

0.58 

 

0.90 

 

1.12 

 

1.24 

 

1.32 

 

1.41 

 

1.45 

 

1.49 

 

1.51 

 

       Appendix B 
Table B1. Probability of occurrence Scales 

 

 

 

 

 

 

 

Table B2.non-detection scales 
Non-detection Score non-detectability 

{%} 

Remote 1 0 to 5 

Low 2 

3 

6 to15 

16 to 25 

Moderate 4 

5 

6 

26-35 

36-45 

46-55 

High 7 

8 

56-65 

66-75 

frequency of 
occurrence 

Score percentage {%} 

Remote 1 < 0.01 

Low 2,3 0.01 to 0.1 

Moderate 4,6 0.1 to 0.5 

High 7,8 0.5 to 1 

very-high 9,10 >1 



 

 
 

9 76-85 

very-high 10 86-100 

 
Table B3.Severity scales 

Rank Severity 
effect 

Meaning 

1 Remote Less MTTR greater than1 hour 

2-3 Low MTTR greater than 1 day 

4-5-6 Moderate MTTR between 1to 4 days 

7-8 High external repair intervention 

9-10 very-high Line shut down or production loss 

 

Appendix C 

Table C1.Severity scale 
Level Severity on 

Personnel 
Severity on 
Equipment 

Severity on 
Environment 

Severity on 
Production 

Severity on 
management 

1 No effects or 
personal 

injury 

No significant 
effects on site 

equipment 

No significant 
impact to the 
environment 

<4 hours of 
downtime 

 

No impact 

 

 

2 

 

minor  effect 
for a person 
fortuitously 
close to  the 
accident site 

Damage to 
hazardous site 

equipment 
without 
accident 

synergy or 
non-critical 

safety 
equipment 

 

Limited impact 
on the site with 

minimal 
depollution 

 

< 1 DAY of 
downtime 

 

damage or 
impact having 

no consequences 
on the progress 
of the project 

 

 

3 

 

Critical effect 
for a person 
fortuitously 
close to  the 
accident site 

Damage to 
hazardous or 

safety 
equipment on- 

site without 
general 

aggravation of 

 

Normal impact 
requiring 
extensive 

depollution 

 

<1 week of 
downtime 

damage or 
impact having 

low 
consequences on 

the project 
progress delay 
or Cost overrun 



 

 
 

the 
consequences 

<10 % 

 

4 

At least one 
victim outside 
the site or at 

least 2 
victims on the 

site 

Damage to 
hazardous or 

safety 
equipment, on-

site with the 
possibility of 
aggravated 

consequences. 

 

Serious  impact 
to vulnerable 

areas 

 

<1 month 

downtime 

damage or 
impact have  

Serious  
consequences on 

the project 
progress , delay 
or Cost overrun 

>10 % 

 

5 

 

numerous 
deaths > 2 

victims 

Damage to 
hazardous or 

safety 
equipment, 

off-site, or on-
site with the 
possibility of 
aggravated 

consequences. 

 

Very-Serious  
impact to 

vulnerable areas 
with local 

repercussions 

 

> 1 month of 
downtime 

Significant 
impact calling 

into question the 
continuation of 

the project. , 
delay or cost 

overrun >50% 
regarding to the 
project duration 

or budget 

 

Appendix D 

Table D1. Rules of combination of criticality parameters 
Rules Probability Non-detection Severity Criticality 

1 High Very-High Very-High Very-
important 

2 High High Very-High Moderate 

3 High Very-High High important 

4 High High Moderate important 

5 High Very-High Moderate important 

6 Very-High Very-High Very-High Very-
important 

7 Very-High High High important 

8 Very-High Moderate Very-High important 



 

 
 

9 Very-High Low Very-High important 

10 Very-High Remote High Low 

11 Moderate High High important 

12 Moderate Very-High Very-High important 

13 Moderate High High Moderate 

14 Moderate High Very-High Moderate 

15 Moderate Moderate High Moderate 

16 Moderate High Moderate Low 

17 Moderate Moderate Moderate Minor 

18 Low High Moderate Minor 

19 Low Moderate Moderate Minor 

20 Low Low Moderate Not-important 

21 Low Low Low Not-important 

22 Low High High Moderate 

23 Low Moderate High Minor 

24 Remote Low Moderate Not-important 

25 Remote Moderate Moderate Not-important 

26 Remote Remote Remote Not-important 

27 Remote Low Low Not-important 

 

 

 

 

 

 

 

 



 

 
 

Appendix E 

Table E1 Fuzzy AHP scales 
 

Linguistic 
Variables 

 

Scale 

 

Fuzzy Triangular 
Scale 

Equal importance 1 (1,1,1) 

Equally to 
Moderately 

2 (1,2,3) 

Moderate 
importance 

3 (2,3,4) 

Moderately to 
Strongly 

4 (3,4,5) 

Strongly 
importance 

5 (4,5,6) 

Strongly to Very 
Strongly 

6 (5,6,7) 

Very strong 
importance 

7 (6,7,8) 

Very Strongly to 
Extremely 

8 (7,8,9) 

Extreme 
importance 

9 (8,9,9) 
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