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In the present research, simulations have been conducted to determine 
numerically the dynamic behaviour of the flow of underground water fed by 
a river. The basic equations governing the problem studied are those of Na-
vier–Stokes equations of conservation of momentum (flows between pores), 
coupled by the Darcy–Forchheimer equations (flows within these pores). To 
understand the phenomena involved, we first study the impact of flow rate on 
the pressure and the filtration velocity in the underground medium, the second 
part is devoted to the calculation of the elevation effect of the river water on the 
flow behaviour in the saturated and unsaturated zone of the aquifer.
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1. INTRODUCTION

The particularity of the reinforcements considered in the research is the pres-
ence of several scales of porosity. On the one hand, the flow is modelled in the pores 
by the law of Darcy–Forchheimer, and on the other hand, it is modelled between the 
pores by the Navier–Stokes equations. The authors of the research, therefore, have a 
domain containing both a porous medium and a fluid zone. 

This problem has already been studied for a long time, since Beavers and 
Joseph [1] study the flows of Navier–Stokes and speak already in their introduction 
about extensive analytical literature. They show the existence of the velocity of slip 
on the surface of the porous environment and propose a boundary condition. There-
after, Saffman [2] justified this boundary condition mathematically and showed that 
the term velocity of Darcy could be neglected. It thus gave the condition known 
under the name of condition of Beavers–Joseph–Saffman. Certain digital studies 
concerning the coupling of the equations of Stokes and Darcy take into account this 
boundary condition, while others do not consider it.
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Many authors have coupled the Navier–Stokes equations for the fluid area 
and Darcy’s equation for the porous zone. Correa and Loula [3] propose a coupling 
between a Navier–Stokes finite element formulation and a Darcy mixed formulation 
using Taylor-Hood elements. 

J. M. Urquiza et al. [4] have presented a mixed finite element formulation of 
the Navier–Stokes with a formulation of the equation of Darcy taken in the form of 
a Poisson’s equation.

G. Pacquaut et al. [5] express the weak formulation of each equation by in-
tegrating the condition of Beavers–Joseph–Saffman. Taking into account the boun-
dary conditions being common to each formulation, they could inject the equation of 
Darcy directly in the formulation of Navier-Stokes, which allowed for the coupling. 
In principle, this makes the weak formulation of the equation of Brinkman.

G. N. Gatica et al. [6] use also a coupling of (Navier–Stokes)–Darcy equations 
to compare several types of elements to achieve a stable formulation. Once again, 
the resolved wording finally returns a weak formulation of the Brinkman equation. 
Masud [7] makes the same type of study by clearly solving the Brinkman equation, 
which he writes under his strong formulation, but calling it the Navier–Stokes–Darcy 
equation. 

H. Tan and K. M. Pillai [8] also propose a finite element formulation of the 
Brinkman equations. However, they propose a modified Brinkman equation to take 
into account a stress jump at the fluid-porous interface.

The coupling between the equations of Darcy and Navier–Stokes was largely 
studied before by using the finite volume method (FVM) in the immersion of fields, 
because of the many applications utilising the heat transfer in the porous environ-
ments and to the interface between the porous environment and the external fluid [9]–
[10]. The technique of immersion of fields used was improved thereafter [11]–[14].

2. SIMULATION PROCEDURES

2.1. Mathematical Model

The equations which govern the problem treated (2) (3) and (5) are those of 
Navier–Stokes (flow between the pores) coupled by the Darcy–Forchheimer equa-
tions (flows inside these pores) expressing respectively the conservation of mass and 
momentum.

Fig. 1.  Physical model.
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(H = 50 m, L = 100 m); (h = 5 m, l = 20 m); e = 10 m.
Pa = 105 Pascal.

2.1.1. Equation: Porous Jump 

                      (1)

where μ is the dynamic fluid viscosity, Δm is the thickness of the medium coefficient, 
v is the velocity normal to the porous face, α is the permeability of the medium and 
C2 is the pressure jump coefficient. α, Δm and C2 are parameters of boundary condi-
tions specified by the user. In laminar flows through porous media, the pressure drop 
is typically proportional to velocity and the constant C2 can be considered to be zero, 
ignoring convective acceleration and diffusion.

2.1.2. Equation: Continuity

                (2)

The equation is obtained by considering the mass flux into a representative 
elementary volume (R.E.V) to the increase of the fluid within the volume.

2.1.3. Equation: Navier-Stokes

Porous media are modelled through the addition of momentum source in 
terms of the governing equation of fluid flow. The sink term presented as equations 
(4) and (6) is assembled of two parts, of which Darcy law represents the left part and 
the right part considers the force of inertia.

 and  are the source term for the i-th (x, z) directions in the momentum equa-
tions (4) and (6).

X-momentum: 

  (3)

  (4)
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Z-momentum:

  (5)

   (6)

where α is the permeability and C2 is the inertial resistance factor.

2.2. Boundary Conditions

• No slip conditions on the walls: (u = w =0);
• Inlet flow:

  (7)

• Outlet flow:  

• Symmetry conditions:  

• Impermeable surfaces: 

The transport equations (2) (3) and (5) are resolved by the control volume 
method and solved by the SIMPLE algorithm [15]–[16], according to the first order-
implicit numerical scheme. The equations of the algebraic system obtained have 
been solved by the Gauss–Seidel iterative method. It is estimated that the conver-
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gence is reached when the relative differences of all the calculated variables, at the 
different nodes of the mesh, become less than 10-5 between two successive iterations.

2.3. The Validity of Darcy Law

The balance between viscous and inertial forces are expressed by a non-di-
mensional parameter called the Reynolds number: 

  (8)

where Re is Reynolds number, ρ is fluid density, v is fluid velocity, d is the diameter 
of the passageway through which the fluid moves, μ is dynamic fluid viscosity.

The authors of the present research have proven theoretically by solving the 
Navier–Stokes equations in the case Re << 1 (that is, when the inertial terms are neg-
ligible). The authors see that the Navier–Stokes equations are called “Stokes equa-
tions”; this relationship is called the Stokes law and it is useful, for example, for 
calculating a sedimentation rate of fine particles (it is necessary that Re << 1).

Fig. 2.  The validity of Darcy’s law (Re vs. Velocity).

At high Reynolds numbers, the relationship between specific discharge and 
hydraulic gradient is no longer linear. Therefore, the transition zone of Reynolds 
numbers in the range of 1–10 is associated with the upper limit of Darcy’s law [17]. 
Such circumstances may occur in fracture flow and adjacent to wells that are pump-
ing at high rates.

The lower limit of Darcy law (8) is associated with extremely slow ground-
water movement. In such cases, other gradients, such as thermal, chemical and/or 
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electrical, may be stronger than the hydraulic gradient and may control the move-
ment of flow.

The results shown in Fig. 2 demonstrate that regardless of the values taken by 
the pressure drop and the filtration rate the number of Re always remains less than 1. 
Thus, the criterion of Darcy is systematically validated in the studied cases.

2.4. Stationary Value for Pressure

The evolution of the pressure of the groundwater flow in the vertical plane and 
in the middle of the aquifer studied (reference zone), represented in Fig. 3, comprises 
two successive phases, i.e., the transitional phase between the first iteration and the 
10th iteration, which depends strongly on the initial state of the system, and the 
phase of established regime, or thence of the latter, independent of the initial state of 
the system (initial conditions).

Fig. 3.  Stationary value for pressure (particular setup).

2.5. Test Meshes

For a gradually varied flow, it takes large longitudinal distances to observe 
significant changes in height; in areas where the flow rapidly varied, the meter is an 
acceptable longitudinal length scale. As the simulation is carried out over a distance 
of 100m of languor and 50m of depth, one can expect a realistic solution, placing a 
calculation node every meter. Then coarse meshes have been selected.

Thus, choosing a fine mesh, there is a clear solution of what the authors are 
willing to achieve. Conversely, for a coarse mesh, the authors have an estimate of the 
solution. The authors do not know how in practice an interpolation is done, but they 
believe that it is made without regard to the physical solution between two nodes.
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The authors have calculated the residual values for each solution. Residues 
have been found in the same order of magnitude as the authors expected to have 
large residuals for coarse meshes.

Table 1
Test Meshes

Cases Mesh Nodes umax 
(m/s)

wmax 
(m/s)

Velocity  
magnitude

(m/s)
Error (%)

1 5 (m)x5(m) 223 0.027 0.0033 0.030 2.33

2 2.5(m) x 2.5(m) 829 0.037 0.0083 0.044 1.98

3 1.5(m) x 1.5(m) 1276 0.030 0.0080 0.037 -

 

Fig. 4.  Test meshes: (Velocity vs. Depth).

To sum up, if the number of nodes is increased, the number of errors is re-
duced due to interpolation between the nodes, and the numerical solution is closer to 
reality. It has also been noted that the computation time increases with the fineness of 
the mesh, but this increase (Error < 2.33 %) is not significant for the meshes chosen 
in the present simulations.

3. INTERPRETATION OF RESULTS

3.1. Pressure Drop vs. Velocity 

The variation of clean pressure drop with the velocity is given in Fig. 5.
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Fig. 5.  Evolution of pressure vs. velocity.

It can be observed from Fig. 5 that pressure drop for clean water increases 
with increased inflow rate (feed rate). When the inlet feed rate increases, the tangen-
tial velocity of flow in the aquifer increases. Thereby the centrifugal force on water 
molecules increases and gives high velocity. It has been found that the clean pressure 
drop  varies 1.44 to the power of velocity as shown in  equation 9.

  (9)

where  – clean pressure drop, Pa, and w – velocity, (m/s).

3.2. Streamlines and Velocity Field

It is observed in Fig. 6 that the flow of water into the aquifer moves in layers, 
which glide one over the other, without mixing, and the flow is laminar. The current 
streamlines traced in the fluid whose tangents at all points are parallel to the direction 
of flow and are generally curved but never intersect.

The flow is a flat flow, in a vertical direction from the river to the aquifer, on 
the one hand, and horizontal from the aquifer to the storage basin, on the other.

 
Fig. 6.  Streamlines and velocity field.
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The velocity field demonstrated in Fig. 7 shows that the velocity is zero close 
to the impermeable walls due to the non-slip condition, the maximum values are 
observed at the level of water infiltration from the river to the aquifer and at the level 
of the aquifer towards the storage area.

Fig. 7.  Streamlines and velocity field.

3.3. Pressure Drop Field

It is seen that the flows are organised according to the search for the most ad-
vantageous outlets (Fig. 8) (evacuation of a maximum of flows with a minimum of 
losses of load). The observation of the load change in approaching the watercourse 
banks to identify what situation you are in. Thus, increasing loads towards the river 
show a river-slick flow.

Fig. 8.  Pressure drop field.

The piezometric lines are doubly influenced by:
• the general direction of flow of the water table (in accordance with the 

flow direction of the river in the general case).
• relations with the river, depending on whether it is supported by the 

groundwater or fed by the water table (a situation that can be reversed 
depending on the season and / or the intensity of the anthropogenic with-
drawals in the groundwater).
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4. CONCLUSIONS

This approach presents a coupling between the Darcy–Forchheimer equations 
and the mass and momentum conservation equations (Navier–Stokes) to describe 
these interactions (river / aquifer) on a local scale. The flow of water into the soil va-
ries according to the multiplicity of paths taken by the drops of water. The interaction 
between rivers and aquifers describes the main phenomenon of infiltration (passage 
of water across the soil surface under the effect of gravity) that constitutes the path 
of groundwater. The flow of infiltrating water varies according to the influence of 
several physical and geological factors. These include percolation (flow of liquid in 
unsaturated soil due to gravity) and capillary rise (ascent of water above the under-
ground water table by capillarity). The behaviour of these two phenomena is depen-
dent on the properties of aquifers, especially hydraulic conductivity, as demonstrated 
by the Darcy experiment, which is the basis for the modelling of underground flows.
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SKAITLISKĀ PIEEJA ŪDENS PLŪSMAS RAKSTUROŠANAI 
NEPIESĀTINĀTAJĀ PORAINĀ VIDĒ, APVIENOJOT NAVJĒ-STOKSA 

UN DARSĪ-FORHEIMERA VIENĀDOJUMUS

K. Hami, I. Zeroual

K o p s a v i l k u m s

Šajā pētījumā tika veiktas simulācijas, lai skaitliski noteiktu upes barotās 
pazemes ūdens plūsmas dinamiskos raksturlielumus. Pamata vienādojumi, kas regulē 
pētāmo problēmu, ir kustības daudzuma saglabāšanās jeb Navjē-Stoksa vienādojumi 
(plūsma starp porām), kurus apvieno ar Darsī-Forheimera vienādojumiem (plūsma 
šajās porās). Lai izprastu iesaistītās parādības, autori vispirms pēta plūsmas ātruma 
ietekmi uz spiedienu un filtrēšanas ātrumu pazemes vidē, pēc tam aprēķina upes 
ūdens līmeņa paaugstināšanās ietekmi uz plūsmas uzvedību ūdens nesējslāņa 
piesātinātajā un nepiesātinātajā daļā.
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